???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/5749
Full metadata record
DC FieldValueLanguage
dc.creatorAmorim, Gustavo Torres dos Santos-
dc.creator.Latteshttp://lattes.cnpq.br/8305962686833557por
dc.contributor.advisor1Damasceno Junior, Pedro Corrêa-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3493599001978076por
dc.contributor.referee1Damasceno Junior, Pedro Corrêa-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3493599001978076por
dc.contributor.referee2Silva, Diolina Moura-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0341541450627705por
dc.contributor.referee3Menezes, Bruna Rafaela da Silva-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9643745154814449por
dc.date.accessioned2022-06-08T15:15:31Z-
dc.date.issued2019-07-30-
dc.identifier.citationAMORIM, Gustavo Torres dos Santos.Modo de reprodução preferencial em genótipos de vinca (Catharanthus roseus [L.] G. Don). 2019. 81 f. Dissertação (Mestrado em Fitotecnia). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/5749-
dc.description.resumoA vinca (Catharanthus roseus [L.] G. Don) distingue-se por ser fonte exclusiva dos alcaloides vincristina e vimblastina, no entanto ocorrem em baixas concentrações na espécie. Tais alcaloides são utilizados em quimioterápicos para o tratamento de tumores, leucemias e linfomas. Sendo assim, é fundamental desenvolver um programa de melhoramento genético na busca de genótipos superiores quanto a produção de vincristina e vimblastina. Para isso, é necessário, inicialmente, o estudo do modo de reprodução preferencial da espécie para a aplicação correta dos métodos de melhoramento. Diante do exposto, esta pesquisa teve como objetivo estudar o modo de reprodução preferencial em 10 genótipos de vinca da coleção de germoplasma da Universidade Federal Rural do Rio de Janeiro, com base na relação pólen:óvulo (P:O), histoquímica dos grãos de pólen, emissão e desenvolvimento de tubos polínicos in vivo, viabilidade polínica e receptividade do estigma. Bem como estimar a diversidade genética via marcadores moleculares ISSR (Inter Simple Sequence Repeats) entre os genótipos analisados. Para estimar a razão (P:O), anteras de cada flor foram excisadas, e os grãos de pólen foram contados sob microscópio; ovários das mesmas flores foram dissecados, e os óvulos foram contados sob estereomicroscópio. Na análise histoquímica dos grãos de pólen utilizou-se os corantes Sudan IV e a solução de I2KI para detecção de lipídeo e amido, respectivamente. A emissão e desenvolvimento de tubos polínicos in vivo foram avaliados em botões florais e flores na antese, em microscopia de fluorescência, utilizando-se o fluorocromo azul de anilina a 0,1%. Para a viabilidade polínica, em botões florais, empregou-se a solução tripla de Alexander e para a receptividade do estigma adotou-se a solução de acetato de alfa-naftil, em flores fechadas e na antese. Na análise genotípica foram utilizados 15 primers ISSR. A matriz fenética foi estimada pelo índice de dissimilaridade de Jaccard e o agrupamento dos genótipos foi realizado via UPGMA (Unweighted Pair Groups Method with Arithmetic Mean). Verificou-se a consistência do padrão de agrupamento através da correlação cofenética. Os resultados da relação (P:O) indicaram que oito, dos 10 genótipos, apresentaram, simultaneamente, autogamia facultativa e alogamia facultativa (modo de reprodução misto). Porém, dois genótipos apresentaram somente um modo de reprodução, alógamo facultativo, no UFRRJ VIN007, e autógamo facultativo no UFRRJ VIN004. Os estigmas receptivos e a elevada viabilidade polínica em botões florais estabeleceram condições favoráveis para a ocorrência da cleistogamia. Com base na emissão e desenvolvimento de tubos polínicos in vivo, constatou-se que dos oito genótipos com modo de reprodução misto, seis deles tiveram forte tendência a alogamia e todos foram autocompatíveis. Verificou-se também a ocorrência da cleistogamia em 50% dos genótipos. No caso, do UFRRJ VIN004 tal ocorrência foi acentuada, o que reforça a sua tendência a autogamia. Entretanto, observou-se que sete genótipos, incluindo o UFRRJ VIN007, exibiram forte tendência a alogamia. Diante disso, percebe-se grande diversidade de estratégias reprodutivas em vinca, já que tanto a autofecundação quanto a alogamia podem estar presentes. A alta diversidade genética obtida pode ser explicada pela forte tendência a alogamia constatada em 70% dos genótipos analisadospor
dc.description.abstractThe periwinkle (Catharanthus roseus [L.] G. Don) is distinguished because it is exclusive source of vincristine and vinblastine alkaloids, however they occur in low concentrations in the species. Such alkaloids are used in chemotherapy for the treatment of tumors, leukemias and lymphomas. Therefore, it is essential to develop a breeding program in search of superior genotypes for vincristine and vinblastine production. For this, it is necessary, initially, the study of the preferential reproduction mode of the species for the correct application of the breeding methods. Given the above, this research aimed to study the preferential mode of reproduction in 10 genotypes of periwinkle from the germplasm collection of the Federal Rural University of Rio de Janeiro, based on the pollen:ovule (P:O) ratio, histochemical pollen, emission and development of pollen tubes in vivo, pollen viability and receptivity of stigma. As well as to estimate genetic diversity using ISSR molecular markers (Inter Simple Sequence Repeats) among the analyzed genotypes. To estimate the ratio (P:O), anthers of each flower were excised, and pollen grains were counted under a microscope; ovaries of the same flowers were dissected, and the ovules were counted under stereomicroscope. In the histochemical analysis of pollen grains were used the dyes Sudan IV and the solution I2KI for the detection of lipid and starch, respectively. The emission and development of pollen tubes in vivo were evaluated in flower buds and flowers in anthesis, under fluorescence microscopy, using 0.1% aniline blue fluorochrome. For the pollen viability, in flower buds, the triple solution of Alexander was used and for the receptivity of the stigma was adopted the solution of alpha-naphthyl acetate, in closed flowers and anthesis. In the genotypic analysis, 15 ISSR primers were used. The phenetic matrix was estimated by dissimilarity index of Jaccard and the grouping of the genotypes was performed by UPGMA (Unweighted Pair Groups Method with Arithmetic Mean). The consistency of the clustering pattern was verified through the cophenetic correlation. The results of the ratio (P:O) indicated that eight of the 10 genotypes presented both facultative self-pollinated and facultative cross pollinated (mixed mating). However, two genotypes presented only one mode of reproduction, facultative cross pollinated, in UFRRJ VIN007, and facultative self-pollinated in UFRRJ VIN004. The receptive stigmas and the high pollen viability in flower buds established favorable conditions for the occurrence of cleistogamy. Based on the emission and development of pollen tubes in vivo, it was verified that of the eight genotypres with mixed reproduction mode, six of them had a strong tendency to allogamy and all were self-compatible. It was also verified the occurrence of cleistogamy in 50% of the genotypes. In the case of UFRRJ VIN004 such occurrence was accentuated, which reinforces its tendency to autogamy. However, it was observed that seven genotypes, including UFRRJ VIN007, showed a strong tendency to allogamy. In view of this, a great diversity of reproductive strategies can be observed in periwinkle, since both self-pollinated and allogamy may be present. The high genetic diversity obtained can be explained by the strong tendency to allogamy found in 70% of the analyzed genotypeseng
dc.description.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-06-08T15:15:31Z No. of bitstreams: 1 2019 - Gustavo Torres Dos Santos Amorim.pdf: 4496184 bytes, checksum: 97c5d949fe3471296b9348cded51297a (MD5)eng
dc.description.provenanceMade available in DSpace on 2022-06-08T15:15:31Z (GMT). No. of bitstreams: 1 2019 - Gustavo Torres Dos Santos Amorim.pdf: 4496184 bytes, checksum: 97c5d949fe3471296b9348cded51297a (MD5) Previous issue date: 2019-07-30eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69675/2019%20-%20Gustavo%20Torres%20Dos%20Santos%20Amorim.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesABDELGADIR, H. A.; JOHNSON, S. D.; VAN STADEN, J. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). South African Journal of Botany, v. 79, p. 132–139, 2012. AGARWAL, M.; SHRIVASTAVA, N.; PADH, H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports, v. 27, n. 1, p. 617-631, 2008. AHMED, A. A. M.; EL-HASSEN, G. M. Effect of water regime and cultivar on herbage yield and alkaloid content of Catharanthus roseus. Journal of Medicinal and Aromatic Plant Sciences, v. 23, n. 3, p. 350-6, 2001. ALEXANDER M. P. Diferential staining of aborted and nonanaborted pollen. Stain Technology, v. 44, p. 117-122, 1969. ALLARD, R. W. Principles of plant breeding. London: J. Wiley, p. 485, 1960. ALLORGE, L.; PHILLIPSON, P. B.; RAZAKAMALALA, R. Catharanthus makayensis L. Allorge, Phillipson & Razakamal. (Apocynaceae), a new species from Madagascar. Candollea, v. 70, n. 1, p. 61-66, 2015. ALVES, M. P. Ocorrência de fungos fitopatogênicos em Catharanthus roseus (vinca) em Viçosa - MG: novos relatos. 2016. 21 p. Trabalho de conclusão de curso (Graduação) – Universidade Federal de Viçosa - MG, 2016. ASKIN, A.; HEPAKSOY, S.; OZCAGIRAN, R. Investigations on the effects of gibberellic acid and boric acid on the germination of some sweet cherry pollens. Ege Universite Ziraat Fakultesi Dergise, v. 27, p. 105-116, 1990. BAKER, H. G.; BAKER, I. Starch in angiosperm pollen grains and its evolutionary significance. American Journal of Botany, v. 66, p. 591–600, 1979. BANDEIRA, J. M.; THUROW, L. B.; PETERS, J. A.; RASEIRA, M. C. B.; BIANCHI, V. J. Caracterização fisiológica da compatibilidade reprodutiva de ameixeira japonesa. Pesquisa Agropecuária Brasileira, v. 46, p. 860-867, 2011. BARRETT, S. C. H. Heterostylous genetic polymorphisms: model systems for evolutionary analysis. In: Barret, S.C.H. (ed.). Evolution and function of heterostyly. Springer-Verlag, p. 1-29, 1992. BARRETT, S. C. H. The evolution of mating strategies in flowering plants. Trends in Plant Science, v. 3, n. 9, p. 335 – 341, 1998. BARRETT, S. C. H.; SHORE, J. S. New Insights on Heterostyly: Comparative Biology, Ecology and Genetics. In: Franklin-Tong, V.E. (ed.) Self-incompatibility in flowering plants-evolution, diversity, and mechanisms. Springer-Verlag, Berlin, Germany, p. 3-32, 2008. 56 BARIK, K.; SAO, S. Pharmaceutical Alkaloids from Catharanthus roseus, Detection and Mapping of Associated QTL. International Journal of Green and Herbal Chemistry, v. 4, n. 3, 2015. BATES, D.; EASTMAN, A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. British Journal of Clinical Pharmacology, v, 83, n. 2, p. 255–268, 2017. BAWA, K. S. Evolution of dioecy in flowering plants. Annual Review of Ecology and Systematics, v. 11, p. 15-39, 1980. BEAUMONT, M. A.; IBRAHIM, K. M.; BOURSOT, P.; BRUFORD, M. W. Measuring genetic distance. In: KARP A. et al. (ed.). Molecular tools for screening biodiversity. Chapman and Hall, London, p. 315-325, 1998. BERED, F.; BARBOSA-NETO, J. F.; CARVALHO, F. I. F. Marcadores moleculares e sua aplicação no melhoramento genético de plantas. Ciência Rural, v. 27, n. 2, p. 513-520, 1997. BEUSELINCK, P.R.; STEINER, J.J. A proposed framework for identifying, quantifying and utilizing plant germoplasm resources. Field Crop Research, v.29, p. 261-272, 1992. BIOVERSITY INTERNATIONAL. Guidelines for the development of crop descriptor lists. Bioversity Technical Bulletin Series. Bioversity International, Rome, Italy. p. 72, 2007. BOKE, N. H. Development of perianth in Vinca rosea L. American Journal of Botany, v 35, p. 413–423, 1948. BHATTACHARYA, A.; MANDAL, S. Stigma form and surface in relation to pollen-stigma interactions in Butea monosperma (Lamk.) Taub. and Catharanthus roseus (Linn.) G. Don. Phytomorphology: An International Journal of Plant Morphology, v. 53, n. 2, p. 179-185, 2003. BHUTKAR, M. A.; BHISE, S. B. Comparative studies on antioxidant properties of Catharanthus rosea and Catharanthus alba. International Journal of Pharm Tech Research, v. 3, p. 1551–1556, 2011. BORGES, L. A.; SOBRINHO, M. S.; LOPES, A. V. Phenology, pollination,and breeding system of the threatened tree Caesalpinia echinata Lam. (Fabaceae),and are view of studies on the reproductive biology in the genus. Flora, v. 204, p. 111–130, 2009. BREVIS, P. A.; NESMITH, D. S.; WETZSTEIN, H. Y.; HAUSMAN, D. B. Production and Viability of Pollen and Pollen–Ovule Ratios in Four Rabbiteye Blueberry Cultivars. Journal of the American Society for Horticultural Science, v. 131, n. 2, p. 181–184, 2006. BROOKES, A. J. The essence of SNPs. Gene, v. 234, p. 177-86, 1999. BROWN, A. H. D. Genetic characterization of plant mating systems. In: BROWN, A. H. D.; CLEGG, M. T.; KAHLER, A. L.; WEIR, B. S. (Ed.). Plant populations genetics, breeding and genetic resourses. Sunderland: Sinauer Associates, p. 145-162, 1990. 57 CARRIÓ, E.; GÜEMES, J. The role of a mixed mating system in the reproduction of a Mediterranean subshrub (Fumana hispidula, Cistaceae). Journal of Plant Research, v. 126, p. 33–40, 2013. CARVALHO, D. F.; SILVA, L. D. B.; FOLEGATTI, M. V.; COSTA, J. R.; CRUZ, F. A. Avaliação da evapotranspiração de referência na região de Seropédica-RJ, utilizando lisímetro de pesagem. Revista Brasileira de Agrometeorologia, v. 14, n. 2, p. 108-116, 2006. CASTRO, H.G.; SANTOS, G.R.; MOMENTÉ, V.G.; SILVA, D.J.H.; RIBEIRO JÚNIOR, J.I. Estudo da divergência genética por características morfológicas entre acessos de mentrasto (Ageratum conyzoides L.) coletados no Estado do Tocantins em diferentes épocas. Revista Brasileira de Plantas Medicinais, v.13, n.1, p. 24-29, 2011. CHARLESWORTH, D. Evolution of Plant Breeding Systems. Current Biology, v. 16, p. 726-735, 2006. CHAUDHARY, S.; SHARMA, V.; PRASAD, M. Characterization and genetic linkage mapping of the horticulturally importante mutation leafless inflorescence (LLI) in periwinkle Catharanthus roseus. Scientia Horticulturae, v. 129, n. 1, p. 142–153, 2011. CHAUDHARY, S.; PANDEY, R.; SHARMA, V.; TRIPATHI, B. N.; KUMAR, S. Detection and mapping of QTLS affecting contents of pharmaceutical alkaloids in leaf and root of Catharanthus roseus. Agricultural Research, v. 2, p. 9–23, 2013. CHOUTEAU, M.; BARABÉ, D.; GIBERNAU, M. Pollen-ovule ratios in some Neotropical Araceae and their putative significance. Plant Systematics and Evolution, v. 257, p. 147-157, 2006. COOK, S. A.; stanley, R. G. Tetrazolium chloride as indicator of pine pollen germinability. Silvae Genetica. v. 9, n. 5, p. 134-136, 1960. COLLINS, F.S.; BROOKS, L.D.; CHARKRAVARTI, A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, v. 8; p. 1229–1231, 1998. COLOMBO, C.; SECOND, G.; CHARRIER, A. Diversity within American cassava germplasm based on RAPD markers. Genetics and Molecular Biology, v. 23, n. 1, p. 189-199, 2000. CORREDOR-PRADO, J. P.; DE CONTI, D.; SEZERINO, A.; GUERRA, M. P.; ORTH, A. I. Biologia reprodutiva e ausência de frutificação de Aloe saponaria (Aiton) Haw. (Xanthorrhoeaceae) fora do local de origem. Revista brasileira de plantas medicinais, v. 17, n. 4, p. 713-721, 2015. COSTA, E. M. R. Divergência genética entre linhagens africanas de feijão-caupi (Vignaunguiculata (l.) WALP.) Através de caracterização morfoagronômica e molecular. 2010. 96 p. Dissertação (Melhoramento Genético de Plantas) - Universidade Federal Rural de Pernambuco, 2010. 58 CRISPIM, J. G.; RÊGO, E. R.; RÊGO, M. M.; NASCIMENTO, N. F. F.; Barroso, P. A. Stigma receptivity and anther dehiscence in ornamental pepper. Horticultura Brasileira, v. 35, p. 609-612, 2017. CRUDEN, R. W. Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution, v. 31. p. 32-46, 1977. CRUDEN, R. W.; MILLER-WARD, S. Pollen-ovule ratio, pollen size, and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution, v.35, p. 964-974, 1981. CRUDEN, R. W.; LYON, D. L. Facultative xenogamy: examination of a mixed mating system. In The Evolutionary Ecology of Plants, ed. JH Bock, YB Linhart, p. 171– 207. Boulder, CO:Westview, 1989. CRUDEN, R. W.; BAKER, K. K.; CULLINAN, T. E.; DISBROW, K. A.; DOUGLAS, K. L.; ERB, J. D.; KIRSTEN, K. J.; MALIK, M. L.; TURNER, E. A. The mating systems and pollination biology of three species of Verbena (Verbenaceae). Journal of the Iowa Academy of Science, v. 97, p. 178-183, 1990. CRUDEN, R. W. Pollen grains: why so many? Plant Systematics and Evolution, v. 222, p. 143-165, 2000. CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. v. 2, Viçosa: Editora UFV, p. 585, 2003. CRUZ, C.D.; REGAZZI, A.J.; CARNEIRO, P.C.S. Modelos biométricos aplicados ao melhoramento genético. Viçosa: Editora UFV, p. 514, 2012. CULLEY, T. M.; KLOOSTER, M. R. The cleistogamous breeding system: a review of its frequency, evolution, and ecology in angiosperms. Botanical Review, v. 73, n. 1, p. 1–30, 2007. DAFNI, A. Pollination ecology: a pratical approach. New York: Oxford University Press, 1992. DAFNI, A.; MAUÉS, M. M. A rapid and simple procedure to determine stigmareceptivity. Sexual Plant Reproduction, v. 11, p. 177–180, 1998. DAFNI, A.; FIRMAGE, D. Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Systematics and Evolution, v. 222, p. 113-132, 2000. DALLA NORA, G.; TEDESCO, S. B.; PASTORI, T.; FRESCURA, V. Dal-Souto.; RIBEIRO, N. D.; LAUGHINGHOUSE IV, H. D.; LOPES, S. J.; SCHIFINO-WITTMANN, M. T. Meiotic behavior and pollinic viability in bean cultivars. Biocell, v. 38, n. 1-3, p. 33-38, 2014. DAMASCENO JUNIOR, P. C.; PEREIRA, T. N. S.; SILVA F. F.; VIANA, A. P.; PEREIRA, M. G. Comportamento floral de Híbridos de mamoeiro (Carica papaya L.) avaliados no verão e primavera. Ceres, v. 55, p. 310-316, 2008. 59 DAMASCENO JUNIOR, P. C.; PEREIRA, T. N. S.; PEREIRA, M. G.; DA SILVA, F. F.; SOUZA, M. M.; NICOLI, R. G. Preferential reproduction mode of hermaphrodite papaya plant (Carica papaya L; Caricaceae). Revista Brasileira de Fruticultura, v. 31, n. 1, p. 182-189, 2009. DAMASCENO JUNIOR, P. C.; PEREIRA, T. N. S.; FREITAS-NETO, M.; PEREIRA, M. G. Meiotic behavior of Carica papaya and Vasconcellea monoica. Caryologia, v. 63, n. 1, p. 229-236, 2010. DANNER, M. A.; CITADIN, I.; SASSO, S. A. Z.; SACHET, M. R.; MALAGI, G. Modo de reprodução e viabilidade de pólen de três espécies de jabuticabeira. Revista Brasileira de Fruticultura, v. 33, p. 345-342, 2011. DAS, S.; SHARANGI, A. B. Madagascar periwinkle (Catharanthus roseus L.): Diverse medicinal and therapeutic benefits to humankind. Journal of Pharmacognosy and Phytochemistry, v. 6, n. 5, p. 1695-1701, 2017. DOYLE, J. J.; DOYLE, J. L. Isolation of plant DNA from fresh tissue. Focus, v. 12, p. 13-15, 1990. DWIVEDI S.; SINGH, M.; SINGH, A. P.; SHARMA, S.; UNIYAL, G. C.; KUMAR, S. Genetic variability, heritability and genetic advance foralkaloid yield attributing traits in 26 genotypes of periwinkle Catharanthus roseus. Journal of Medicinal and Aromatic Plant Sciences, v. 21, p. 320–324, 1999. EDLUND, A. F.; SAWANSON, R.; PREUSS, D. Pollen and stigma structure and function: the role of diversity in pollination. The Plant Cell, v. 16, p. 84-97, 2004. EL-SAYED, M.; VERPOORTE, R. Influence of Growth Retardants on Serpentine Accumulation in Catharanthus roseus Cell Suspension Cultures. American Journal of Plant Physiology, v. 2, p. 373-377, 2007. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA (Embrapa). Banco de Dados - Fungos Relatados em Plantas no Brasil. Disponível em: http://pragawall.cenargen.embrapa.br/aiqweb/michtml/micbanco01a.asp. Acesso em: 08/03/2018. ETCHEVERRY, A.V.; ALEMÁN, M. M.; FIGUEROA-FLEMING, T.; LÓPEZ-SPAHR, D.; GÓMEZ, C.A.; YÁÑEZ, C.; FIGUEROA-CASTRO, D. M.; ORTEGA-BAES, P. Pollen:Ovule ratio and its relationship with other floral traits in Papilionoideae (Leguminosae): an evaluation with argentine species. Plant Biology, v. 14, p. 171-178, 2012. FAIFE-CABRERA, M.; FERRERO, V.; NAVARRO, L. Relationship between herkogamy, incompatibility and reciprocity with pollen–ovule ratios in Melochia (Malvaceae). Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, p. 1-10, 2016. FALCONER, D. S. Introdução à genética quantitativa. Tradução de M.A. SILVA; J.C. SILVA. Viçosa: UFV, p. 279, 1987. 60 FANG, X.; TURNER, N. C.; YAN, G.; LI, F.; SIDDIQUE, K. H. M. Flower numbers, pod production, pollen viability, and pistil function are reduced and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of experimental botany, v, 61, p. 335-345, 2009. FAROOQUI, A. A.; SREERAMU, B. S. Cultivation of Medicinal and Aromatic Crops. University Press, Hyderabad, India, p. 308–312, 2001. FARR, D. F.; ROSSMAN, A. Y.; PALM, M. E.; MCCRAY, E. B. (2015). Fungal Databases, Systematic Botany and Mycology Laboratory, ARS, USDA. Disponível em: http://nt.arsgrin.gov/fungaldatabases/. Acesso em: 20/12/2017. FERREIRA, F. M. Diversidade em populações simuladas com base em locus multialélicos. 2007. 177 p. Tese (Doutorado em Genética e Melhoramento) – Universidade Federal de Viçosa, MG, 2007. FERREIRA, M. E.; GRATTAPAGLIA, D. Introdução ao uso de marcadores moleculares em análise genética. 3. ed. Brasília: EMBRAPA, CENARGEN, p. 220, 1998. FERREIRA, Manuela Martins. Crescimento, alocação de biomassa e abordagem fitoquímica de plantas de Catharanthus roseus (L.) G. Don em função da adubação orgânica e época de colheita. 2003. 63 p. Dissertação (Mestrado) – Universidade Federal de Lavras, MG, 2003. FERREIRA, M. A. J. da F.; QUEIRÓZ, M. A.; VENCOVSKY, R.; BRAZ, L. T.; VIEIRA, M. L. C. Implicações da Expressão Sexual e do sistema reprodutivo de melancia em programa de pré-melhoramento. Brasília: CENARGEN - Boletim de Pesquisa e Desenvolvimento 65. p. 24, 2004. FETSCHER, A. E. Resolution of male-female conflict in an hermaphroditic flower. Proceedings of the Royal Society B, v. 268, n. 1466, p. 525–529, 2001. FLORA OF CHINA EDITORIAL COMMITTEE. Flora of China. Missouri Botanical Garden and Harvard University Herbaria, St. Louis, Missouri and Cambridge, Massachusetts, USA, 2015. FRANKEL, R. & GALUN, E. Pollination mechanisms, reproduction and plant breeding. New York, Springer-verlag, p. 70-3, 1977. FRANZON, R. C.; CORRÊA, E. R.; RASEIRA, M. C. B. In vitro pollen germination of feijoa (Acca sellowiana (Berg) Burret). Crop Breeding and Apllied Biotechnology, v. 5, p. 229-233, 2005. FREITAS, L. B.; BERED, F. Genética e evolução vegetal. Porto Alegre: UFRGS, p. 463, 2003. FRISCHKNECHT, P. M; BATTIG, M; BAUMANN, T. W. Effect of drought and wounding stress on indole alkaloid formation in Catharanthus roseus. Phytochemistry, v. 26, n. 3, p. 707-710, 1987. 61 FRYXELL, P. A. Mode of reproduction of higher plants. The Botanical Review, v. 23, n. 3, p. 135-233, 1957. GALETTA, G. J. Pollen and Seed Management. In: MOORE, J.N.; JANIK, J. (Ed.). Methods in fruit Breeding. Indiana: Purdne Universitz Press, p. 23-47, 1983. GALLONI, M.; PODDA, L.; VIVARELLI, D.; CRISTOFOLINI, G. Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean Legumes (Fam. Fabaceae - Subfam. Faboideae). Plant Systematics and Evolution, v. 266, p. 147–164, 2007. GAN, X.; CAO, L.; ZHANG, X.; LI, H. Floral biology, breeding system and pollination ecology of an endangered tree Tetracentron sinense Oliv. (Trochodendraceae). Botanical Studies, p. 54-50, 2013. GAO, C.; YUAN, D.; YANG, Y.; WANG, B.; LIU, D.; ZOU, F. Pollen Tube Growth and Double Fertilization in Camellia oleifera. Journal of the American Society for Horticultural Science, v. 140, n. 1, p. 12–18, 2015. GARCÍA, C. C. Pollen starch reserves in tomato relatives: Ecophysiological implications. Grana, v. 46, p. 13–19, 2007. GARCIA, M. T. A.; MIGUEZ, M. B.; GOTTSBERGUER, G. Pollen: ovule ratio and its relationship with other reproductive traits in some Passiflora species (Passifloraceae). Anales Del Jardín Botánico de Madrid, v. 71, p. 1-8, 2014. GUPTA, R. Periwinkle-produces anticancer drug. Indian Farming, v. 7, p. 11–13, 1977. GUPTA, P.K.; ROY, J.K.; PRASAD, M. Single nucleotide polymorphisms: A new paradigm for molecular marker technology and DNA polymorphism detection with emphasis on their use in plants. Current Science, v. 80, n. 4, p. 4524-535, 2001. GUPTA, S.; PANDEY-RAI S.; SRIVASTAVA, S.; NAITHANI, S. C.; PRASAD, M.; KUMAR, S. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. Journal of Genetics, v. 86, p. 259–268, 2007. GHOLAMHOSSEINPOUR, Z.; HEMATI, K.; DORODIAN, H.; BASHIR-SADR, Z. Effect of nitrogen fertilizer on yield and amount of alkaloids in periwinkle and determination of vinblastine and vincristine by HPLC and TLC. Plant Sciences Research, v. 3, p. 4–9, 2011. HALLAUER, A. R.; MIRANDA FILHO, J. B. de. Quantitative genetics in maize breeding. 2nd ed. Ames: Iowa State University Press, p. 468, 1988. HARLAN, J. R. Crops and Man. American Society of Agronomy, Madison, Wisconsin, p. 295, 1975. HASSAN, R. A.; HABIB, A. A.; EL-DIN, E. Effect of nitrogen and potassium fertilization on growth, yield and alkaloidal content of periwinkle (Catharanthus roseus G. Don). Medicinal and Aromatic Plant Science and Biotechnology, Egypt, v. 3, p. 24–26, 2009. 62 HAWKES, J. G. The diversity of crop plants. Harvard University Press, Cambridge, Mass, p.184, 1983. HEGDE, D. M. Effect of level and time of nitrogen application on growth and productivity of periwinkle, Catharanthus roseus. Herba Hungarica, v. 25, p. 107–114, 1986. HERRERA, S.; LORA, J.; HORMAZA, J.I.; HERRERO, M.; RODRIGO, J. Optimizing Production in the New Generation of Apricot Cultivars: Self-incompatibility, S-RNase Allele Identification, and Incompatibility Group Assignment. Frontiers in Plant Science, v. 9, p. 1-12, 2018. HESLOP-HARRISON, J.; HESLOP-HARRISON, Y. Evaluation of pollen viability by enzymatically induced fluorescence; intracellular hydrolysis of fluorescein diacetate. Stain Technology, v. 45, p. 115-120, 1970. HESLOP-HARRISON, Y.; SHIVANNA, K. R. The receptive surfasse of the Angiosperm stigma. Annals of Botany, v. 41, p. 1233–1258, 1977. HESLOP-HARRISON, J.; SHIVANNA, K. R. The evaluation of pollen quality, and a further appraisal of fluorochomatic (FCR) test procedure. Theoretical and applied Genetics, v. 67, n. 4, p. 367-375, 1984. HESLOP-HARRISON, J. S. The angiosperm stigma. In: Cresti, M., Tiezzi, A. (Eds.), Sexual Plant Reproduction. Springer-Verlag, Berlin, p. 59–68, 1992. HOEKSTRA, F. A.; BRUINSMA, J. Respiration and vitality of binucleate and trinucleatepollen. Brazilian Journal of Plant Physiology, v. 34, p. 221-225, 1975. HOKCHED, O.; RAMÍREZ, N. Breeding systems in species of Melastomataceae in Gran Sabana (Bolivar State, Venezuela). Acta Botánica Venezuélica, 31: 387-408, 2008. HOLSINGER, K. E. Pollination biology and the evolution of mating systems in flowering plants. Evolutionary biology, n. 29, p. 107–149, 1996. HORNER, H. T.; PALMER, R. G. Mechanisms of genetic male sterility. Crop Science, Madison, v. 35, n. 6, p. 1527-1535, 1995. HUANG, Z.; ZHU, J.; MU, X.; LIN, J. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Annals of Botany, v. 93, p. 295-301, 2004. HU, J.; VICK, B.A. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Molecular Biology Reporter, n. 21, p. 289-294, 2003. IBRAHIM, M.M.; ABOU EL-NASR, T.H.S.; ABDEL-SAMEA, N. S.; ABOUD, K.A. Efficiency of RAPD and ISSR Markers in Assessment ofGenetic Diversity in Some Catharanthus roseus L. Cultivars Grown in Egypt. World Applied Sciences Journal, v. 26, n. 11, p. 1407-1415, 2013. 63 IDREES, M.; NAEEM, M.; KHAN, M. M. A. The superiority of cv ‘rosea’ over cv ‘alba’ of periwinkle (Catharanthus roseus L.) in alkaloid production and other physiological attributes. Turkish Journal of Biology, v. 34, p. 81-88, 2010. INMET – Instituto Nacional de Meteorologia. Disponível em: http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas. Acesso em: 25/03/2019. JACCARD, P. Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise des sciences naturalles. v. 44, p. 223–270, 1908. JAIN, S. K. The evolution of inbreeding in plants. Annual Review of Ecology and Systematics, v. 7, p. 469-495, 1976. JANA, B. K.; VARGHESE, B. Effect of mineral nutrition on growth and alkaloid content of Catharanthus roseus. Indian Agriculture, v. 40, p. 93–99, 1996. JOHANSEN, D. A. Plant microtechnique. New York: Mc Graw-Hill Book, 1940. JUNAID, A.; KHAN, S. H.; SIDDIQUI, Z. H.; FATIMA, Z.; MAQSOOD, M.; BHAT, MA.; NASIM, A. S.; ILAH, A.; AHMAD, I. Z.; KHAN, A. S.; MUJIB, A.; SHARMA, M. P. Catharanthus roseus (L.) G. Don. An important drug: it’s applications and production. Pharmacie Globale: Int J Compr Pharm, v. 1, p. 1–16, 2010. JURGENS, A.; WITT, T.; GOTTSBERGER, G. Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number and sexual system. Sexual Plant Reproduction, v. 14 p. 279-289, 2002. KALINGANIRE, A.; Harwood, C. E.; Slee, M. U.; Simons, A. J. Floral structure, stigma receptivity and pollen viability in relation to protandry and self-incompatibility in silky oak (Grevillea robusta A. Cunn.). Annals of Botany, v. 86, n. 1, p. 133-148, 2000. KARAKAYA, D. Effects of inflorescence on pollen viability and morphologyof Strawberry (Fragaria vesca L.). Journal of Science and Technology, v. 1, p. 43-47, 2011. KEARNS, C. A.; INOUYE, D. Techniques for pollinations biologists. Niwot, Colorado: University press of Colorado. p. 579, 1993. KELLEY, L. A.; GARDNER, S. P.; SUTCLIFFE, M. J. An automated approach for clustering an ensemble of NMR derived protein structures into conformationally-related subfamilies. Protein Engineering, v. 9, p. 1063-1065, 1996. KNUTH, P. Handbook of Flower Pollination, vol. III, Oxford: Clarendon Press, 1909. KÖLLIKER, R. Development and characterisation of simple sequence repeat (SSR) markers for white clover (Trifolium repens L.). Theoretical and Applied Genetics, v. 102, n. 2-3, p. 416-24, 2001. 64 KRISHNAKUMAR, M. P.; VALSALAKUMARI, P. K.; ARAVINDAKSHAN, M. Pollen production, fertility and viability in different nodes of the banana cultivars. Agricultural Research, v. 30, p. 53-57, 1992. KULKARNI, R. N.; BASKARAN, K. From Herkogamy to Cleistogamy – development of cleistogamy in periwinkle. Journal of Heredity, v. 104, p. 140–148, 2013. KULKARNI, R. N.; BASKARAN, K.; JHANG, T. Breeding medicinal plant, periwinkle [Catharanthus roseus (L) G. Don]: a review. Plant Genetic Resources: Characterization and Utilization, v. 14, n. 4, p. 283-302, 2016. KULKARNI, R. N. Evidence for phenotypic assortative mating for flower colour n periwinkle. Plant Breeding, v. 118, n. 6, p. 561–564, 1999. KULKARNI, R. N.; SREEVALLI, Y.; BASKARAN, K. Allelic genes at two loci govern different mechanisms of intraflower selfpollination in self-pollinating strains of periwinkle. Journal of Heredity, v. 96, n. 1, p. 71–77, 2004. KULKARNI, R. N.; SREEVALLI, Y.; BASKARAN, K.; KUMAR S. The mechanism and inheritance of intraflower self-pollination in self-pollinating strains of periwinkle. Plant Breeding, v. 120, n. 3, p. 247–250, 2001. KULKARNI, R. N, SREEVALLI, Y, BASKARAN, K. Allelic genes at two loci govern different mechanisms of intraflower selfpollination in self-pollinating strains of periwinkle. Journal of Heredity, v. 95, p. 71–77, 2005a. LACERDA, D. R. A técnica de RAPD: uma ferramenta molecular em estudos de conservação de plantas. Lundiana, v.3, n.2, p.87-92, 2002. LAL, S.; MISTRY, K. N.; SHAH, S. D.; THAKER, R.; VAIDYA, P. B.Genetic diversity assessment in nine cultivars of Catharanthus roseus from Central Gujarat (India) through RAPD, ISSR and SSR markers. Journal of research in Biology, v. 8, p. 667-675, 2011. LATA, B. Cultivation, mineral nutrition and seed production of Catharanthus roseus (L.) G. Don in the temperate climate zone. Phytochemistry Reviews, v. 6, n. 2-3, p. 403-411, 2007. LEVY, A.; MILO J.; ASHRI, A.; PALEVITCH, D. Heterosis andcorrelation analysis of the vegetative components and ajmalicinecontent in the roots of the medicinal plant –Catharanthus roseus (L.) G. Don. Euphytica, v. 32, p. 557–564, 1983. LEWIS, D.; JONES D. A. The genetics of heterostyly. In: Barrett SCH (ed) Evolution and Function of Heterostyly. Springer-Verlag: New York, p. 129–150, 1992. LIMA, D. C.; G. T.; DOS REIS, G. B.; TECHIO, V. H.; DAVIDE, L. C.; ABREU, A. F.B. A Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.). Genetics and molecular research: GMR, v. 15, n. 2, 2016. LLOYD, D. G.; WEBB, C. J. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy of pollen and stigmas in angiosperms. New Zealand Journal of Botany, v. 24, p. 135–162, 1986. 65 LÓPEZ, J.; RODRIGUEZ-RIAÑO, T.; ORTEGA-OLIVENCIA, A.; DEVESA, J. A.; RUIZ, T. Pollination mechanisms and pollen-ovule ratios in some Genisteae (Fabaceae) from Southwestern Europe. Plant Systematics and Evolution, v. 216, p. 23-47, 1999. LÖRZ, H.; WENZEL, G. Molecular Marker Systems in Plant Breeding and Crop Improvement. Springer, New York, NY, USA, 2005. MACIEL, S. C.; SILVA, F. S.; REIS, M.S.; JADÃO, A.S.; ROSA, D. D.; GIAMPAN, J. S.; KITAJIMA, E. W.; REZENDE, J. A. M.; CAMARGO, L. E. A. Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil. Scientia Agricola, v. 68, n. 6, p. 687-690, 2011. MAGNOTTA, M.; MURATA, J.; CHEN, J.; DE LUCA, V. Identification of a low vindoline accumulating cultivar of Catharanthus roseus (L.) G. Don by alkaloid and enzymatic profiling. Phytochemistry, v. 67, p. 1758–1764, 2006. MANTEL, N. The detection of disease clustering and a generalized regression approach. Cancer Research, v. 27, n. 2, p. 209-202, 1967. MAITI, S.; CHANDRA. R.; GEETHA, K. A.; MANDAL. Production technology of some important medicinal and aromatic crops developed under the all India coordinated research project. Indian Journal Arecanut Spices Medicinal Plants, v. 2, n. 3, p. 88–98, 2000. MARCELLÁN, O. N.; CAMADRO, E. L. The viability of asparagus pollen after storage atlow temperatures. Scientia Horticulturae, v. 67, p. 101-104, 1996. MARTINS, K.C., PEREIRA, T.N.S., SOUZA, S.A.M., RODRIGUES, R., AMARAL JUNIOR, A. T. Crossability and evaluation of incompatibility barriers in crosses between Capsicum species. Crop Breeding and Applied Biotechnology, v. 15, p. 139-145, 2015. MICHALSKI, S. G.; DURKA, W. Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytologist, v. 183, p. 470–479, 2009. MILACH, S. C. K.Marcadores Moleculares em plantas. Universidade Federaldo Rio Grande do Sul, Porto Alegre, p. 17-28, 1998. MILATOVIĆ, D.; NIKOLIĆ, D.; Radović, A.; Krška, B. Fluorescence microscopy as a tool for determining self-incompatibility in apricot cultivars. Acta Horticulturae, p. 7-13, 2018. MILO, J.; LEVY, A.; AKAVIA, N.; ASHRI, A.; PALEVITCH, D. Inheritance of corolla colour and anthocyanin pigments inperiwinkle Catharanthus roseus (L) G. Don. Zeitschrift für Pflanzenzüchtung, v. 95, p. 352–360, 1985. MIONE, T.; ANDERSON G. J. Pollen-Ovule Ratios and Breeding System Evolution in Solanum Section Basarthrum (Solanaceae). American Journal of Botany, v. 79, n. 3, p. 279-287, 1992. MIRANDA, P. A., CLEMENT, C. R. Germination and storage of pejibaye (Bactris gasipaes) Palmae pollen. Revista de Biologia Tropical, v. 38, p. 29-33, 1990. 66 MISHRA, P.; UNIYAL, G. C.; SHARMA, S.; KUMAR S. Pattern of diversity for morphological and alkaloid yield related traits among the periwinkle Catharanthus roseus accessions collected from in and around Indian subcontinent Genetic Resources and Crop Evolution, v. 48, n. 3, p. 273-286, 2001. MIYAJIMA, D. Pollination and seed set in vinca [Catharanthus roseus (L.) G. Don]. The Journal of Horticultural Science and Biotechnology, v. 79, n. 5, p. 771-775, 2004. MORGAN, R. Enciclopédia das ervas e plantas medicinais. 8a ed., São Paulo, p.141, 1994. MOHAMMADI, S. A.; PRASANNA, B. M. Analysis of genetic diversity in crop plants: salient statistical tools and considerations. Crop Science, v. 43, p. 1235-1248, 2003. MULLIS, K.; FALLONA, F. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods of Enzymology, v. 55, p. 335-350, 1987. MUNHOZ, M.; PINTO DA LUZ, C. F., FILHO, P. E. M.; BARTH, O. M.; REINERT, F. Viabilidade polínica de Carica papaya L.: uma comparação metodológica. Revista Brasileira de Botânica, v. 31, n. 2, p. 209-214, 2008. NAEEM, M.; AFTAB, T.; KHA, M. A. Catharanthus roseus: Current Research and Future Prospects. 1st ed, Label, Springer, p. 412, 2017. NARKIEWICZ, M.; SADOWSKA, A. Possibility of cultivation of rosy periwinkle (Catharanthus roseus (L.) G. Don) for seed production under conditions of Poland. Biuletyn IHAR, v. 177, p. 179–184, 1991. NEJAT, N.; VALDIANI, A.; CAHILL, D.; TAN Yee-How; MAZIAH, M.; ABIRI R. Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus): The Two Faces of a Versatile Herb. The Scientific World Journal, v. 2015, p. 1-19, 2015. NMPB. Agro-techniques of Selected Medicinal Plants (vol 1). National Medicinal Plants. Board, Department of AYUSH, Ministry of Health and Family Welfare, Government of India, p. 111, 2014. NUNES, J. C. O.; DANTAS, A. C. M.; PEDROTTI, E. L.; ORTH, A. I.; GUERRA, M. P. Germinação de pólen in vitro e receptividade do estigma em macieira cvs. Fuji e Golden Delicious. Revista Brasileira de Fruticultura, v. 23, n. 1, p. 35 - 39, 2001. NUNES, R. de C.; BUSTAMANTE, F. de O.; TECHIO, V. H.; MITTELMANN A. Morphology and pollen viability of Lolium multiflorum Lam. Ciência e Agrotecnologia, v. 36, n. 2, p. 180-188, 2012. OAKLEY, C. G.; MORIUCHI, K. S.; WINN, A. A. The maintenance of outcrossing in predominantly selfing species: ideas and evidence from cleistogamous species. Annual Review of Ecology, Evolution, and Systematics, v. 38, p. 437–457, 2007. OLIVEIRA, M. S. P.; MAUÉS, M. M.; KALUME, M. A. de A. Viabilidade de pólen in vivo e in vitro em genótipos de açaizeiro. Acta Botânica Brasílica, v. 15, n. 1, p. 27-33, 2001. 67 OMS - Organização Mundial de Saúde. OMS: câncer mata 8,8 milhões de pessoas anualmente no mundo. Disponível em: <https://nacoesunidas.org/oms-cancer-mata-88-milhoes-de-pessoas-anualmente-no-mundo/> Acesso em: 20/07/2018. ORAGUZIE, NC, et al, Association Mapping in Plants. New York, USA: Springer, v. IX, p. 277, 2007. PAGLIARINI, M. S. Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genetics and Molecular Biology, v. 23, p. 997–1002, 2000. PAGLIARINI, M. S.; POZZOBON, M. T. Meiose em vegetais: um foque para caracterização de germoplasma. In: CURSO DE CITOGENÉTICA APLICADO A RECURSOS VEGETAIS, 2., 2004, Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia, p. 37-39, 2005 (Documento, 154). PAREEK, S. K.; MAHESHWARI, M. L.; GUPTA, R. Cultivation of periwinkle in North India. Indian Journal of Horticulture, v. 30, n. 3, p. 9–12, 1985. PATERSON, A. H.; TANKSLEY, S. D.; SORRELLS, M. E. DNA markers in plant improvement. Advances in Agronomy, v. 46, p. 39-90, 1991b. PAUW, A.; STOFBERG, J.; WATERMAN, R. J. Flies and flowers in Darwin’s race. Evolution, v. 63, p. 268–279, 2009. PEARSE, A. G. E. Histochemistry, theoretical and applied. 2 ed. Edinburgh: Churchill Livingstone. 594p, 1953. PHILBRICK, T.; VOMELA, M.; NOVELO, A. R. Preanthesis cleistogamy in the genus Podostemum (Podostemaceae). Rhodora, v. 108, n. 935, p. 195-202, 2006. PLAIZIER, A. C. A revision of Catharanthus roseus (L.) G. Don (Apocynaceae). Mededelingen Landbouwhogeschool, v. 81, n. 9, p. 1–12, 1981. PRIMO, L. M.; MACHADO, I. C. A new case of late-acting self-incompatibility in Capparis L. (Brassicaceae): C. jacobinae Moric. ex Eichler, an endemic andromonoecious species of the Caatinga, Pernambuco State, Brazil. Acta Botanica Brasilica, v. 23, n. 3, p. 764-768, 2009. PROTA. Plant Resources of Tropical Africa. African Ornamentals. Proposals and Examples. Wageningen, The Netherlands: PROTA Foundation; 2015. RAJESWARA RAO, B. R.; SINGH, M. Effect of NPK fertilizers and spacing on periwinkle (Catharanthus roseus) under irrigated and rained conditions. Herba Hungarica, v. 29, p. 1–2, 1990. RAMALHO, M. A. P.; SANTOS, J. B.; PINTO, C. A. B. P. Genética na Agropecuária. 4. ed. Lavras: UFLA, p. 463, 2008. 68 RAMOS, D. P.; CASTRO, A. F.; CAMARGO, M. N. Levantamento detalhado de solos da área da Universidade Federal Rural do Rio de Janeiro. Pesquisa Agropecuária Brasileira, Série Agronomia, Brasília, v. 8, n. 1, p. 1-27, 1973. R DEVELOPMENT CORE TEAM (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. Disponível em: http://www.r-project.org/. REDDY, M.P. et al. Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding. Euphytica, v. 128, n. 1, p. 9-17, 2002. REIS, A.; HENRIQUE, I. M. Phytophthora nicotianae e Rhizoctonia solani: dois novos patógenos da vinca no Brasil. Brasília, DF: Embrapa Hortaliças. Embrapa Hortaliças. Boletim de Pesquisa e Desenvolvimento, 30, p. 19, 2007. RODRIGUEZ-RIANO, T.; DAFNI, A. A new procedure to asses pollen viability. Sexual Plant Reproduction, v. 12, p. 241-244, 2000. ROEPKE, J.; WU, M.; SALIM, V.; THAMM, A. M. K.; MURATA, J.; PLOSS, K.; BOLAND, W.; DE LUCA, V. Vinca drug components accumulate exclusively in leaf exudates of Madagascar periwinkle. Proceedings of the National Academy of Sciences of the United States of America, v. 107, p. 15287–15292, 2010. ROSS, I. A. Medicinal Plants of the World: Chemical Constituents, Traditional and Modern Medicinal Uses. Totowa, New Jersey, p. 623, 1999. RUDD, S. Expressed sequence tags: alternative or complement to whole genome sequences. Trends Plant Science, v. 8, n. 7, p. 321-329, 2003. SAADEDIN, S. M. K. Genetic diversity and alkaloids profile evaluation of Catharanthus roseus L. based on RAPD molecular markers and RP- HPLC analysis. Pakistan Journal of Biotechnology, v. 15, n. 2, p. 541-551, 2018. SADOWSKA, A.; OBIDOWSKA, G.; SZACHO-GUCHOWICZ, M. Effect of NPK fertilization upon production of crude material and alkaloid content of Catharanthus roseus (L.) G. Don). Biuletyn IHAR, v. 170, p. 55–63, 1989. SALOMÃO, A. N. Manual de curadores de germoplasma – Vegetal: Glossário. Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, p. 326, 2010. SANTANA, J. G. S.; NASCIMENTO, A. L. S.; COSTA, T. S.; ALMEIDA, T. M. B.; RABBANI, A. R. C.; SILVA, A. V. C. Estimation of genetic diversity in a natural population of Cambuí tree (Myrciaria tenella O. Berg) using ISSR markers. Genetics and Molecular Research, v. 15, n. 4, p. 1-11, 2016. SENBAGALAKSHMI, P.; RAO, M.V.; SENTHIL KUMAR, T. In Vitro Studies, Biosynthesis of Secondary Metabolites and Pharmacological Utility of Catharanthus roseus (L.) G. Don.: A Review. In: Naeem M., Aftab T., Khan M. (eds) Catharanthus roseus. Springer, p. 153-199, 2017. 69 SCHIFINO-WITTMANN, M. T.; DALL’AGNOL M. Auto-incompatibilidade em plantas. Ciência Rural, v. 32, n. 6, p. 1083-1090, 2002. SCHOEN, D. J.; BROWN, A. H. D. Whole and partflower self-pollination in Glycine clandestine and G. argyrea and the evolution of autogamy. Evolution, n. 45, p. 1651–1664, 1991. SEABRA, P. V.; ALEXANDRE, M. A. V.; RIVAS, E. B.; DUARTE, L. M. L. (1999). Occurrence of a Potyvirus in Catharanthus roseus. Arquivos do Instituto Biológico, v. 66, p. 116, 1999. SEVESTRE-RIGOUZZO, M.; NEF-CAMPA, C.; GHESQUIERE, A.; CHRESTIN, H. Genetic diversity and alkaloid production in Catharanthus roseus, C. trichophyllus and their hybrids. Euphyitca, v. 66, p. 151–159, 1993. SHAW, R. K.; ACHARYA, L.; MUKHERJEE, A. K. Assessment of genetic diversity in a highly valuablemedicinal plant Catharanthus roseus using molecularmarkers. Crop Breeding and Applied Biotechnology, v. 9, p. 52-59, 2009. SHARMA, V.; CHAUDHARY, S.; SRIVASTAVA, S.; PANDEY, R.; KUMAR, S. Characterization of variation and quantitative trait loci related to terpenoid indole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. Journal of Genetics, v. 91, p. 49–69, 2012. SHIVANNA, K. R. Pollen–pistil interaction and fertilization. In: Pollen biology and biotechnology. Enfield, NH: Science Publisher Inc., 117, 2003. SHOKEEN, B.; CHOUDHARY, S.; SETHY, N. K.; BHATIA, S. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Annals of Botany, v. 108, p. 321–336, 2011. SILVA, R. M. de; GERHARD BANDEL, M. I. F. F.; MARTINS, P. S. Biologia Reprodutiva de Etnovariedades de Mandioca. Scientia Agrícola, v. 58, n. 1, p. 101-107, 2001. SOKAL, R. R..; MICHENER, C. D. A statistical method for evaluating systematic relationships. Science Bulletin. v. 38, p. 1409–1438, 1958. SOKAL, R. R.; ROHLF, F. James. The comparison of dendrograms by objective methods. Taxon, v. 11, n. 2, p. 33-40, 1962. SOUZA, D. C. L. Técnicas moleculares para caracterização e conservação de plantas medicinais e aromáticas: uma revisão. Revista brasileira de plantas medicinais, v. 17, n.3, 2015. SOUZA, M. M.; PEREIRA, T. N. S.; MARTINS, E. R. Microsporogênese e microgametogênese associadas ao tamanho do botão floral e da antera e viabilidade polínica em maracujazeiro amarelo (Passiflora edulis Sims f. flavicarpa Degener). Ciência e Agrotecnologia, v. 26, p. 1209-1217, 2002. 70 SREEVALLI, Y. Inheritance of some morphological, floral, reproductive and economically important traits in the medicinal plant, periwinkle [Catharanthus roseus (L.) G. Don]. Ph.D. Thesis, Department of Botany, Bangalore, India, 2002. SREEVALLI, Y.; BASKARAN, K.; KULKARNI, R. N.; KUMAR, S. Further evidence for the absence of automatic and intraflower self-pollination in periwinkle. Current Science, v. 79, n. 12, p. 1648–1649, 2000. SREEVALLI, Y.; KULKARNI, R. N.; BASKARAN, K.; R. CHANDRASHEKARA, S. Increasing the content of leaf and root alkaloids of high alkaloid content mutants of periwinkle through nitrogen fertilization. Industrial Crops and Products, v. 19, n. 2, p. 191–195, 2004. SREEVALLI, Y.; KULKARNI, R. N.; BASKARAN, K. Inheritance of flower color in periwinkle: orange-red corolla and white eye. Journal of Heredity, v. 93, n. 1, p. 55-58, 2002. STANLEY, R. G.; LINSKENS, H. F. Pollen: biology, biochemistry and management. New York: Springer - Verlag, p. 172, 1974. STEPHENS, D. T.; LEVESQUE, D. E.; DAVIS, A. R. Pollen-ovule ratios in seven species of Vaccinium (Ericaceae) and stamen structure in Vaccinium myrtilloides and Vaccinium vitis-idaea. Botany, v. 90, p. 599–614, 2012. TANGMITCHAROEN, S.; OWENS, J. N. Pollen Viability and Pollen-tube Growth Following Controlled Pollination and their Relation to Low Fruit Production in Teak (Tectona grandis Linn, f.). Annals of Botany, v. 80, p. 401-410, 1997. TANKSLEY, S. D.; YOUNG, N. D.; PATERSON, A. H., et al. RFLP mapping in plant breeding: new tools for an old science. Biotechnology, v. 7, p. 257-264, 1989. TAYLOR, L. P.; HEPLER, P. K. Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology, v. 48, p. 460-491, 1997. TEBET, M. S.; Dematte MESP, BASTOS, J. K.; SARTI, S. J.; Churata Masca MGC. Growth of Catharanthus roseus and foliar concentration of vicristine alcaloid as affected by nitrogen fertilization, illumination and plant age). Científica, v. 24, n. 2, p. 407–418, 1996. THIEL, T.; MICHALEK, W.; VARSHNEY, R. K.; GRANER, A.; 106(3):411-422., E. E. D. F. T. D. A. C. O. G.-D. S.-M. I. B. H. V. L. T. A. G. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, v. 106, p. 411-422, 2003. TOLAMBIYA, P.; MATHUR, S. A Study on Potential Phytopharmaceuticals Assets in Catharanthus roseus L. (Alba). International Journal of Life Sciences Biotechnology and Pharma Research, v. 5, n. 1, p. 1-6, 2016. TIWARI, J. K.; POONAM, P.; SAURABH, S.; DEVI, S.; ALI, N.; BHARDWAJ, V.; SINGH, B. P. Molecular characterization of potato somatic hybrids by inter simple sequence repeat (ISSR) markers. Potato Journal, v. 42, n. 1, p. 1-7, 2015. 71 TYLER, V.E. Medicinal plant research: 1953-1987. Planta Medica, v. 54, n. 2, p. 95-100, 1988. UNNATI, S.; RIPAL, S.; SANJEEV, A.; NIVATI. A. Novel anticancer agents from plant sources. Chinese Journal of Natural Medicine, v. 11, n. 1, p. 16-23, 2013. VAISSIÈRE, B. E. Honeybees, Apis mellifera L. (Hymenoptera: Apidae), as pollinators of upland cotton, Gossypium hirsutum L. (Malvaceae), for hybrid seed production. 1991; Thesis (PhD) – College Station, Texas, 1991. VAISSIÈRE, B. E.; FREITAS, B. M.; GEMMILL-HERREN, B. Protocol to detect and assess pollination deficits in crops: a handbook for its use. Projeto FAO/IFAD, p. 72, 2011. VAN DER HEIJDEN, JACOBS D. I.; SNOEIJER W.; Hallard D.; VERPOORTE R. The Catharanthus Alkaloids: Pharmacognosy and Biotechnology Current Medicinal Chemistry, v. 11, n. 5, p. 607-628, 2004. VENCOVSKY, R.; BARRIGA, P. Genética biométrica no fitomelhoramento. Sociedade Brasileira de genética, Ribeirão Preto, p. 496, 1992. VERMA, A.; LAAKSO, I.; SEPPANEN-LAAKSO, T.; HUHTIKANGAS, A.; RIEKKOLA, M. A simplified procedure for indole alkaloid extraction from Catharanthus roseus combined with a semi-synthetic production process for vinblastine. Molecules, v. 12, p. 1307-1315, 2007. VIEIRA, L. J.; SANTANA, J. R. F.; ALVES, A. A. C; LEDO, C. A. S.; SOUZA, F. V. D. Use of aniline blue stain to observing pollen tubes development in different Manihot Mill. species. African Journal of Agricultural Research, v. 10, n. 15, p. 1805-1809, 2015. WANG, Z.; WEBER, J.L.; ZHONG, G.; TANKSLEY, S.D. Survey of plant short tandem DNA repeats. Theoretical and Applied Genetics, v. 88, p. 1-6, 1994. WANG, L.; ZHANG, Y.; HE, H. P.; ZHANG, Q.; LI, S. F.; HAO, X. J. Three new terpenoid indole alkaloids from Catharanthus roseus. Planta Medica, v. 77, n. 7, p. 754-758, 2011. WANG, Y.; ZHANG, D.; RENNER, S. S.; CHEN, Z. Self-pollination by sliding pollen in Caulokaempferia coenobialis (Zingiberaceae). International Journal of Plant Sciences, v. 166, p. 753–759, 2005. WANG, Y. Q.; ZHANG, D. X.; CHEN, Z. Y. Pollen histochemistry and pollen:ovule ratios in Zingiberaceae. Annals of Botany, v. 94, p. 583-591, 2004. WEBB, C. J.; LLOYD, D. G. The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, v. 24, p. 163–178, 1986. WILLIAMS, J. G. K.; KUBELIK, A. R.; LIVAK, K. J.; RAFALSKI, J. A.; TINGEY, S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetics makers. Nucleic Acids Research, v. 18, n. 22, p. 6531-6535, 1990. 72 WINN, A. A.; ELLE, E.; KALISZ, S.; CHEPTOU, P. O.; ECKERT, C. G.; GOODWILLIE, C.; JOHNSTON, M. O.; MOELLER, D. A.; REE, R. H.; SARGENT, R. D.; VALLEJO-MARÍN, M. Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution, v. 65, p. 3339-3359, 2011. WOREDE, F.; SREEWONGCHAI, T.; PHUMICHAI, C.; SRIPICHITT, P. Multivariate Analysis of Genetic Diversity among some Rice Genotypes Using Morpho-agronomic Traits. Journal of Plant Sciences, v. 9, p. 14-24, 2014. WUBS et al. Mixed mating system in the fern Asplenium scolopendrium: implications for colonization potential. Annals of Botany, v. 106, p. 583–590, 2010. YI, W.; LAW, E.; MCCOY, D.; WETZSTEIN, H. Y. Stigma development and receptivity in Almond (Prunus dulcis). Annals of Botany, v. 97, p. 57–63, 2006. YU, F.; DE LUCA V. ATP‐binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proceedings of the National Academy of Sciences, v. 110, p. 5830–15835, 2013. YU, J. K.; LA ROTA, M.; KANTETY, R.V.; SORRELLS, M.E. EST derived SSR markers for comparative mapping in wheat and rice. Molecular Genetics and Genomics, v. 271, p. 742-751, 2004. ZEVEN, A. C.; ZHUKOVSKY, P. M. Dictionary of cultivated plants and their centres of diversity. PUDOC, Wageningen. p. 219, 1975. ZHENG, Yang-Yang.; LIN, Xian-Ju.; LIANG, Hui-Min.; WANG, Fang-Fei.; CHEN, Li-Yu. The Long Journey of Pollen Tube in the Pistil. International Journal of Molecular Sciences, v. 19, n. 3529, p. 1-15, 2018. ZHU, T.; SALMERON, J. High-definition genome profiling for genetic marker discovery. Trends Plant Science, v. 12, p. 196–202, 2007. ZHUKOVSKY, P.M. Genetic and botanical irregularities in the evolution of cultivated plants. Genetika Mosc. 1. p. 41-49 (in Russian, English summary), 1965.por
dc.rightsAcesso Abertopor
dc.subjectMicroscopia de fluorescênciapor
dc.subjectmarcadores ISSRpor
dc.subjectplantas medicinaispor
dc.subjectcleistogamiapor
dc.subjectmelhoramento genéticopor
dc.subjectFluorescence microscopyeng
dc.subjectISSR markerseng
dc.subjectmedicinal plantseng
dc.subjectcleistogamyeng
dc.subjectplant breedingeng
dc.subject.cnpqAgronomiapor
dc.titleModo de reprodução preferencial em genótipos de vinca (Catharanthus roseus [L.] G. Don)por
dc.title.alternativePreferential reproduction mode in vinca genotypes (Catharanthus roseus [L.] G. Don)eng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Fitotecnia

Files in This Item:
File Description SizeFormat 
2019 - Gustavo Torres Dos Santos Amorim.pdf2019 - Gustavo Torres Dos Santos Amorim4.39 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.