???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/5068
Full metadata record
DC FieldValueLanguage
dc.creatorDias, Isac Marinho-
dc.creator.Latteshttp://lattes.cnpq.br/1169302677565127por
dc.contributor.advisor1Guedes, Guilherme Pereira-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1072583605352186por
dc.contributor.referee1Neves, Amanda Porto Neves-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7460226353493536por
dc.contributor.referee2Vaz, Maria das Graças Fialho-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/3903204691885345por
dc.date.accessioned2021-09-23T15:06:03Z-
dc.date.issued2019-03-13-
dc.identifier.citationDIAS, Isac Marinho. Síntese e caracterização de novos compostos de coordenação contendo ligantes pirazólicos funcionalizados. 2019. 170f. Dissertação (Mestrado em Química, Química Inorgânica). Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/5068-
dc.description.resumoHeterociclos aromáticos como os pirazóis são amplamente utilizados na construção de novas arquiteturas moleculares quando coordenados a íons do bloco d, levando a interessantes propriedades biológicas e tecnológicas. Desta forma, o presente trabalho visou a síntese e a caracterização de dois pré-ligantes pirazólicos funcionalizados: 5-amino-1-(benzotiazol-2-il)- 1H-pirazol-4-carboxilato de potássio (L1) e 5-amino-1-(pirazin-2-il)-1H-pirazol-4-carboxilato de potássio (L2). Para a formação de cada pré-ligante foram realizadas três etapas reacionais, a saber: (1) formação do núcleo pirazólico funcionalizado com um grupamento éster, (2) hidrólise e (3) uma etapa de neutralização. Além disto, foi realizada a síntese de um terceiro ligante inédito, contendo contém o grupamento fotossensível azo (-N=N-), (E)-diazeno-1,2-diilbis(4,1- fenileno)bis(hidrazinocarboxilato), chamado de L3. A síntese deste composto foi realizada através da redução do 4-nitrofenol em meio básico para a formação do grupamento azo, seguida de duas reações envolvendo adições à carbonila. Todas as etapas reacionais para a formação dos compostos L1-L3 foram devidamente caracterizadas por espectroscopias na região do infravermelho, RMN 1H e RMN 13C, além de análises como ponto de fusão e CG-MS. Após a formação dos pré-ligantes L1 e L2, estes foram utilizados na síntese de novos compostos de coordenação contendo os íons de CoII, FeII, MnII , CuII e NiII. Através da metodologia de difusão lenta foram obtidas duas novas famílias de compostos de coordenação cuja fórmula molecular é cis-[M(L1)2(OH2)4] (M= FeII, CoII e NiII) e trans-[M(L2)2(OH2)4] (MnII e CoII). A estruturas cristalinas destes complexos foram elucidadas por difração de raios X por monocristal, verificando-se que ligante se coordenou de forma monodentada e que a esfera de coordenação do íon metálico foi completada por quatro moléculas de água. Foi verificado que os retículos cristalinos destes sistemas são estabilizados por ligações de hidrogênio intra e intermoleculares. Os complexos da família cis-[M(L1)2(OH2)4 ainda foram estudados por voltametria cíclica onde foram observados picos de oxidação e redução referentes aos íons de FeII, CoII e NiII . A espectroscopia Mössbauer para o complexo cis-[Fe(L1)2(OH2)4] evidenciou o estado alto spin para o íon FeII no intervalo de temperatura de 4-300 K. As medidas magnéticas para os compostos cis-[Fe(L1)2(OH2)4] (M=CoII e FeII) mostraram um comportamento oriundo da anisotropia magnética axial e rômbica para estes sistemas, uma vez que as interações de troca são desprezíveis devido à grande distância entre os sítios metálicos no empacotamento cristalino. A resposta frente à inibição da enzima acetilcolinesterase dos complexos da família cis-[M(L1)2(OH2)4] revelou taxas de inibição entre 35 - 55% na concentração de 10 μmol L-1 . Utilizando a metodologia de difusão de vapor foram obtidos compostos de coordenação inéditos [Cu(L1)2(Py)2] e [Co(L1)2(Py)2]. Estes compostos também tiveram sua estrutura elucidada por difração de raios X por monocristal, sendo verificado que o complexo [Co(L1)2(Py)2] possui uma geometria tetraédrica distorcida onde o centro metálico e está coordenado a duas moléculas de piridina e dois átomos de grupos carboxilato de ligantes diferentes na forma monodentada. O complexo [Cu(L1)2(Py)2] possui um íon de CuII em uma geometria octaédrica distorcida, verificando-se a coordenação de dois ligantes L1 e duas moléculas de piridina.por
dc.description.abstractAromatic heterocycles such as pyrazoles are widely used in the construction of new molecular architectures when coordinated to ions of the d block leading to interesting biological and technological properties. In this work we describe the synthesis and characterization of two functionalized pyrazole ligands: potassium 5-amino-1-(benzothiazol-2-yl)-1H-pyrazole-4-carboxylate (L1) and potassium 5-amino-1-(pyrazin-2-yl)-1H-pyrazole-4-carboxylate (L2). The syntheses of the ligands were performed in three steps: (1) formation of the pyrazole nucleus with an ester group, (2) hydrolysis and (3) neutralization. In addition, a new azo (N=N-) photosensitive compound (E)-diazene-1,2-diylbis(4,1 phenylene)bis(hydrazinecarboxylate) (L3) was obtained. The synthesis of L3 was performed by reduction of 4-nitrophenol in alkaline conditions, affording the azo group, followed by two additions reactions in the phenol and carbonyl groups. All reactions steps were characterized by infrared, 1H-NMR and 13C-NMR spectroscopies, as well as melting point and GC-MS analyzes. The L1 and L2 ligands were used to synthesize new coordination compounds containing CoII, FeII, MnII, CuII and NiII ions. By using the slow diffusion methodology, two new families of coordination compounds wereobtained, with molecular formulas cis-[M(L1)2(OH2)4] (M= FeII, CoII and NiII) and trans-[M(L2)2(OH2)4] (MnII and CoII). The crystal structures of these complexes were solved by X ray diffraction and it was observed that the ligands are coordinated in a monodentate fashion. The crystal packing of these systems is stabilized by intra and intermolecular hydrogen bonds. The complexes cis-[M(L1)2(OH2)4] were studied by cyclic voltammetry, which theoxidation and reduction peaks were observed with respect to the FeII, CoII and NiII ions. The Mössbauer spectroscopy for cis-[Fe(L1)2(OH2)4] showed a high spin state for the FeII ion in the emperature range 4-300 K. The magnetic measurements for the compounds cis-[Fe(L1)2(OH2)4] (M = CoII, FeII) showed a key role played by the axial and rhombic anisotropy from the metal ion, since the exchange interactions are negligible. Furthermore, this family was evaluated against the inhibition of the acetylcholinesterase showing good inhibition rates in aconcentration of 10 μmol L-1. Through the slow diffusion methodology, new coordination compounds [Cu(L1)2(Py)2] and [Co(L1)2(Py)2] were obtained. The crystal structures of the compounds were elucidated by single crystal X-ray diffraction; in the [Co(L1)2(Py)2] complex, the metal ion lies on a distorted tetrahedral geometry, coordinated to two pyridine molecules and two oxygen atoms from different carboxylate groups in a monodentate fashion. The complex [Cu(L1)2(Py)2] presented the CuII ion in a distorted octahedral geometry, with two L1 ligands coordinated in a bidentate fashion the coordination sphere of the metal ion was completed by two coordinated pyridine molecules.eng
dc.description.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2021-09-23T15:06:03Z No. of bitstreams: 1 2019 - Isac Marinho Dias.pdf: 5845934 bytes, checksum: 437b109380ab6b4dbe11d8d33b167215 (MD5)eng
dc.description.provenanceMade available in DSpace on 2021-09-23T15:06:03Z (GMT). No. of bitstreams: 1 2019 - Isac Marinho Dias.pdf: 5845934 bytes, checksum: 437b109380ab6b4dbe11d8d33b167215 (MD5) Previous issue date: 2019-03-13eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/66860/2019%20-%20Isac%20Marinho%20Dias.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Químicapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesJournal of Molecular Structure 1178 (2019) 155e161, p. 155e161. ABD-ALLAH ZORDOK, W. et al. Synthesis, Spectral, X-Ray Diffraction, DFT, and Nematicidal Activity of Mixed Ligand Complexes of Ethyl 2-(2-Hydroxybenzylidine)- Hydrazine Carboxylate and 1,10-Phenanthroline with Some Transition Metals. Journal of the Chinese Chemical Society, v. 64, p. 1478–1495, 2017. ABDELLATIF, K. R. A. et al. Design, synthesis, modeling studies and biological evaluation of thiazolidine derivatives containing pyrazole core as potential anti-diabetic PPAR-γ derivatives containing pyrazole core as potential anti-diabetic PPAR-γ. Bioorganic Chemistry, v. 82, p. 86-99, 2019. ABDEL‐LATIF, S. A.; MOUSTAFA, H. Synthesis, spectroscopic properties, density functional theory calculations and nonlinear optical properties of novel complexes of 5‐ hydroxy‐4,7‐dimethyl‐6‐(phenylazo) coumarin with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) metal ions. Applied Organometallic Chemistry, v. 32, n. 4, 2018. AGGARWAL, R. et al. Multi-component solvent-free versus stepwise solvent mediated reactions: Regiospecific formation of 6-trifluoromethyl and 4-trifluoromethyl-1H pyrazolo[3,4-b]pyridines. Journal of Fluorine Chemistry , v. 140, p. 31–37, 2012. AHMADIA, R. A. et al. Synthesis, Spectroscopy, and Magnetic Characterization of Copper(II) and Cobalt(II) Complexes with 2-Amino 5-Bromopyridine as Ligand. Russian Journal of Coordination Chemistry, v. 39, n. 12, p. 867- 871, 2013. ALTOMARE , A. et al. EXPO software for solving crystal structures by powder diffraction data: methods and application. Crystal Research and Technology, p. 737 - 742, 2015. ANDERSON, J.; BEDELL, J.; GROUNDWATER, W. Organic Spectroscopic Analysis. Cambridge: The Royal Society of Chemistry, 2004. ANSARI, A. et al. Review: biologically active pyrazole derivatives. New Journal of Chemistry, v. 41, p. 16-41, 2017. ARMAREGO , W. ; CHAI, C. L. L. Purification Of laboratory Chemicals. 5ª. ed. Burlington,: Butterworth-Heinemann, 2003. AZUAH , R. T. et al. DAVE: A Comprehensive Software Suite for the Reduction, Visualization, and Analysis of Low Energy Neutron Spectroscopic Data. Journal of research of the National Institute of Standards and Technology, v. 114, p. 341-358, 2009. 124 BANDGAR, B. P. et al. Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorganic Medicinal Chemistry, v. 18, p. 1362-1370, 2010. BEHR, L. C.; FUSCO, R.; JARBOE, C. H. The Chemistry of Heterocyclic Compounds - Pyrazoles, Pyrazolines, Pyrazolidines, Indazoles and Condensed Rings. 1ª ed. ed. New York: Interscience, 1967. BERNARDINO, A. M. R. et al. Synthesis and leishmanicidal activities of 1-(4-X-phenyl)-N′- [(4-Y-phenyl)methylene]-1H-pyrazole-4-carbohydrazides. European Journal of Medicinal Chemistry, v. 41, p. 80 - 87, 2006. BERNHARD , S.; TODOROVA , ; WILD,. Some thoughts about the single crystal growth. CrystEngComm, v. 751, n. 14, p. 751-757, 2012. BHATTACHARYA, S. et al. Construction of Bis-pyrazole Based Co(II) Metal−Organic Frameworks and Exploration of Their Chirality and Magnetic Properties. Crystal Growth Design, v. 14, p. 2853-2865, 2014. BISWAS, N. et al. One new azido bridged dinuclear copper(II) thiosemicarbazide complex: synthesis, DNA/protein binding, molecular docking study and cytotoxicity activity. New Journal of Chemistry, v. 41, p. 12996 - 13011, 2017. BRÄUNLICH, I. et al. Polynuclear Iron(II)–Aminotriazole Spincrossover Complexes (Polymers) In Solution. Inorganic Chemistry, v. 53, p. 3546-3557, 2014. BROOKER, S. Spin crossover with thermal hysteresis: practicalities and lessons learnt. Chemical Society Reviews, v. 44, p. 2880-2892, 2015. BUCHHOLZ , A.; ESEOLA , A. O.; PLASS, W. Slow magnetic relaxation in mononuclear tetrahedral cobalt(II) complexes with 2-(1H-imidazol-2-yl)phenol based ligands. Comptes Rendus Chimie, v. 15, p. 929-936, 2012. CARBALLO , R. et al. Polyhedron, v. 22 , p. 1051-1057, 2003. CAVALLINI,. Status and perspectives in thin films and patterning of spin crossover compounds. Physical Chemistry Chemical Physics, v. 14, p. 11867–11876 , 2012. CHAKRABORTY, ; RAJPUT, ; DESIRAJU, R. Designing Ternary Co-crystals with Stacking Interactions and Weak Hydrogen Bonds. 4,4 ′ -Bis-hydroxyazobenzene. Crystal Growth e Design, n. 14, p. 2571-2577, 2014. CHAWLA, S. K. et al. Syntheses and crystal structures of three novel Cu(II) coordination polymers of different dimensionality constructed from Cu(II) carboxylates (carboxylate = 125 malonate (mal), 2 acetate (ac),fumarate (fum)) and conformationally flexible 1,4-bis(imidazole 1-y. Polyhedron, v. 23, p. 3007–3019, 2004. CHEN, P. Y. et al. Slow relaxation of the magnetization observed in mononuclear Ln–radical compounds with D4d geometry configurations. Dalton Transactions, n. 10.1039/c8dt03809k, 2019. CHIGURUPATI , S. et al. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chemistry, v. 67, p. 9-17, 2016. CORMA, A.; GARCIA, H.; LIABRÉS, F. X. Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, v. 110, p. 4606–4655, 2010. COSTEA, L. V. et al. Synthesis and Electrochemical Behavior of Some 1H-3-Methyl-4- ethoxycarbonyl-5-(benzylidenehydrazino)pyrazoles. Monatshefte fur Chemie, v. 137, p. 737– 744, 2006. CUNHA BASTOS, V. L. F. et al. Brain acethylcholinesterase as an ‘in vitro’ detector of organophosphorus and carbamate insecticides in water. Water Research, v. 25, p. 835-840, 1991. DEKA, K. et al. Self-assembled carboxylate complexes of zinc, nickel and copper. Journal of Molecular Structure, v. 827, p. 44-49, 2007. DHERS, S.; FELTHAM, H. L. C.; SALLY, B. A toolbox of building blocks, linkers and crystallisation methods used to generate single-chain magnets. Coordination Chemistry Reviews, v. 296, p. 24-44, 2015. DIAZ , C.; YUTONIC , N.; WEISS, B. Ionization of the Fe-X bond in polar solvents: A spectroscopic study of CpFe(dppe)X complexes, v. 12, n. 11, p. 1403-1407, 1993. DOBRZYNSKA, D. et al. ynthesis, Spectroscopy, and Magnetic Properties of FeII and CoII Quinoline-2-carboxylates: Crystal Structure of trans-Bis(quinoline-2- carboxylato)bis(propanol)iron(II). European Journal Inorganic Chemistry, p. 110-117, 2004. DOJER, et al. Three new cobalt(II) carboxylates with 2-, 3- and 4-aminopyridine: Syntheses,structures and magnetic properties. Inorganica Chimica Acta , v. 83 , p. 98–104, 2012. DUA, L. et al. Subtle differences in the hydrogen bonding of alcohol to divalent oxygen and sulfur. Chemical Physics Letters, v. 667, p. 146–153, 2017. 126 ELKANZI, N. A. A. Review on Synthesis of prazole and pyrazolines. International Journal of Research in Pharmaceutical and Biomedical Sciences, v. 4, 2013. ELLMAN, G. L. et al. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochemical Pharmacology, v. 7, p. 88, 1961. FARIA, J. V. et al. Recently reported biological activities of pyrazole compounds. Bioorganic & Medicinal Chemistry , v. 25, p. 5891 - 5903, 2017. FIGGIS, B. N. et al. The magnetic behaviour of cubic field 3T1g terms. Journal of the Chemical Society: Inorganic, Physical, Theoretical., v. 0, p. 1411-1421, 1966. FIGGIS, B. N. et al. Magnetic behavior of cubic field 5T(sub 2g) terms in lower symmetry. Journal of the Chemical Society A: Inorganic, Physical, Theoretical., v. 57, p. 198, 1967. FOLEY , P. et al. MAO-B inhibitors: multiple roles in the therapy of neurodegenerative disorders. Parkinsonism and Related Disorders, v. 6, p. 25-47, 2000. GE, M.; CLINE, E.; YANG, L. A general method for the preparation of 3-acyl-4-cyano-5- amino-pyrazoles. Tetrahedron Letters, v. 47, p. 5797–5799, 2006. GEHA, R. M. et al. Analysis of Conserved Active Site Residues in Monoamine Oxidase A and B and Their Three-dimensional Molecular Modeling. The Journal of Biological Chemistry, v. 277, n. 19, p. 17209–17216, 2002. GHORAB, M. M. et al. Synthesis of novel pyrazole and pyrimidine derivatives bearing sulfonamide moiety as antitumor and radiosensitizing agents. Medicinal Chemistry Research, v. 21, n. 7, p. 1376-1383, 2012. GIRISH , Y. R. et al. ZnO: An Ecofriendly, Green Nano‐catalyst for the Synthesis of Pyrazole Derivatives under Aqueous Media. Journal of the Chinese Chemical Society, v. 61, p. 1175– 1179, 2014. GOKHAN-KELEKÇI , N. et al. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorganic & Medicinal Chemistry, v. 15, p. 5775–5786, 2007. GOMEZ, L. et al. Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: Synthesis and preliminary SAR analysis. Bioorganic & Medicinal Chemistry Letters, v. 17, p. 2723–2727, 2007. GRIRRANE , A. et al. Synthesis, structure, magnetic and electrochemical properties of an oxydiacetate iron(II) complex. Inorganica Chimica Acta , v. 357, p. 4215–4219, 2004. GUEDES, G. P. et al. A new quartz-like metal-organic framework constructed from a versatile pyrazole-based spacer. Crystal Growth and Design, v. 15, p. 1027-1030, 2015. 127 GUTLICH, P.; GOODWIN, H. A. Spin Crossover - An Overall Perspective. Topics in Current Chemistry, v. 233, p. 1-47, 2004. HACKETT, J. C. Chemical Reactivity Theory: A Density Functional View Edited by Pratim Kumar Chattaraj. Journal of the American Chemical Society (2010), 132(21), 7558, v. 132, p. 7558, 2010. HALCROW, M. A. Pyrazoles and pyrazolides—flexible synthons in self-assembly. Dalton Transactions, v. 12, p. 2059–2073, 2009. HALCROW, M. A. Spin-crossover Compounds with Wide Thermal Hysteresis. Chemistry Letters, v. 14, p. 11867–11876 , 2014. HAMMERICH, O.; SPEISE, B. Organic Electrochemistry: Revised and Expanded. Fifth Edition. ed. USA: CR Press, 2016. HAMON, F. et al. Azobenzenes-synthesis and carbohydrate applications. Tetrahedron, v. 65, p. 10105 -10123, 2009. HAO , H. et al. Multiple spin phases in a switchable Fe(II) complex: polymorphism and symmetry breaking effects. Journal Materials Chemistry C, v. 6, p. 3352-3361, 2018. HASEGAWA, Y.; KUME , S.; NISHIHARA, H. Reversible light-induced magnetization change in an azobenzene-attached pyridylbenzimidazole complex of iron(II) at room temperature. Dalton Transactions, p. 280–284, 2009. HEA, et al. Synthesis and Characterization of a Novel Heterocycle: 1-Substituted-4- arylazamethylene-6-arylpyrazolo[5,4-d]-1,3-oxazine. Journal Heterocyclic Chemistry, v. 45, p. 365-368, 2008. HERGOLD-BRUNDIC, A.; KAITNER, B.; KAMENAR, B. Metal complexes with pyrazole derived ligands. Part I. Synthesis and crystal structures of 3-amino-4-acetyl-5-methylpyrazole (L) and of the tetrahedral complexes Zn(II), Cu(II) and Hg(II). Inorganica Chimica Acta, v. 188, p. 152-158, 1991. HOWARD , D. L.; KJAERGAARD, H. G. Hydrogen bonding to divalent sulfur. Physical Chemistry Chemical Physics, v. 10, p. 4113–4118, 2008. ILHAN, I. O.; SARIPINAR, E.; AKÇAMUR, Y. Synthesis of some pyrazole-3-carboxylic acid-hydrazide and pyrazolopyridazine compounds. Journal of Heterocyclic Chemistry, v. 42, p. 117–120, 2005. ILKIMEN, H. et al. Synthesis and characterization of a novel proton salt of 2-amino-6- nitrobenzothiazole with 2 , 6-pyridinedicarboxylic acid and its metal complexes and their 128 antimicrobial and antifungal activity studies. Journal Of Molecular Structure, v. 1120, p. 25- 33, 2016. IPPAGUNTA, S. K. et al. Identification of Toll-like receptor signaling inhibitors based on selective activation of hierarchically acting signaling proteins. Science Signaling, v. 11, p. 1077, 2018. JEROME, C. et al. Water adsorption in MOFs: fundamentals and applications. Chemical Society Reviews, v. 43, p. 5594, 2014. JIAN, F. F. et al. In situ synthesis of (5-phenyl-1H-pyrazole-3-carboxylic acid) metal complexes and their stable supramolecular microporous frameworks. Inorganica Chimica Acta, v. 362, p. 4219-4225, 2009. JIAN-HUA, W. et al. Effects of hydrogen bond on the melting point of azole explosives. Journal of Molecular Structure, v. 1115, Fevereiro 2018. JUNIOR, C. V. et al. Produtos naturais como candidatos a fármacos úteis no tratamento do mal de Alzheimer. Química Nova, v. 27, n. 4, p. 655-660, 2004. JUNIOR, H. D. C. S. Cálculos teóricos envolvendo sistemas magnéticos de baixa dimensionalidade. Universidade Federal Rural do Rio de Janeiro. Seropédica, p. 145. 2016. KAMESHWARA , V. R. et al. Copper triflate-mediated synthesis of 1,3,5-triarylpyrazoles in [bmim][PF6] ionic liquid and evaluation of their anticancer activities. RSC Advances, v. 3, p. 15396-15403, 2013. KARMAKAR, A.; SARMA, R. J.; BARUA, J. B. Synthesis and characterisation of dinuclear and mononuclear cobalt (II) benzoate complexes. Polyhedron 26 (2007) 1347–1355, v. 26, p. 1347-1355, 2007. KARROUCHI , K. et al. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules, v. 23, p. 134, 2018. KHALIL, N. S. N- and S-alpha-l-arabinopyranosyl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles. First synthesis and biological evaluation. European Journal Medicinal Chemistry, v. 42, p. 1193-1199, 2007. KHALILULLAH, H. et al. Synthesis and antihepatotoxic activity of 5-(2,3-dihydro-1,4- benzodioxane-6-yl)-3-substituted-phenyl-4,5-dihydro1H-pyrazole derivatives. Bioorganic & Medicinal Chemistry Letters, v. 21, p. 7251–7254, 2011. KHAN, et al. Coordination compounds of 4,5,6,7-tetrahydro-1 H -indazole with Cu(II), Co(II) and Ag(I): Structural, antimicrobial, antioxidant and enzyme studies. Journal of Coordination Chemistry, v. 70, p. 4054-4069, 2017. 129 KHOOBI, et al. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. European Journal of Medicinal Chemistry, v. 89:296-303, p. 296 - 303. KHUSNIYAROV, M. M. How to Switch Spin-Crossover Metal Complexes at Constant Room Temperature. Chemistry - A European Journal, v. 22, p. 15178-15191, 2016. KNORR, L. Einwirkung von acetessigester auf phenylhydrazin. European Journal of Chemistry, v. 16, p. 2597–2599, 1883. KOZLEVCAR, B.; POCKAJ, M.; NIVES, K. IR analyses of the carboxylate forms in struturally determided [CuII(κ3-L)2]] species isolated from different acidic solutions. Macedonian Journal of Chemistry and Chemical Engineering, v. 34, p. 133–138, 2015. KRISHNAKUMARA, V.; JAYAMANIB, N.; MATHAMMAL, R. Molecular structure, vibrational spectral studies of pyrazole and 3,5-dimethyl pyrazole based on density functional calculations. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, v. 79, p. 1959– 1968, 2011. KUMAR, N.; KACHROO , P. L.; KANT, R. Studies on Complexes of Metal(II) Carboxylates with Donor Molecules, Part III. Complexes of Cobalt(II) Alkanoates with Aromatic Amine N oxides. Transition Metal Chemistry, v. 4, p. 315-318, 1979. KURIHARA, M. et al. Redox-Conjugated Reversible Isomerization of Ferrocenylazobenzene with a Single Green Light. Journal of American Chemical Society, v. 124, p. 8800-8801, 2002. LARKIN, P. Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. 1. ed. [S.l.]: Elsevier, 2011. LEVER, A. B. P.; RAMAWAMY, B. S. Isotopic Sbdies of the Metal-Ligand Bond. Part II. The Far Infrared Spectra of Some Binuclear and Polymeric Copper Carboxylate Derivatives; Variable Temperature and Isotopic Studies of the Copper-Ligand Vibrations. Canadian Journal of Chemistry, v. 51, 1973. LI, et al. Two cobalt complexes derived from 1H-1,2,3-triazole-4,5-dicarboxylic acid: Syntheses, structures and magnetic properties. Inorganic Chemistry Communications , v. 65, p. 59-62, 2016. LIN , J. et al. Insight into a hexanuclear cobalt complex: Strategy to construct efficient catalysts for visible light-driven water oxidation. Applied Catalysis B: Environmental, v. 241, p. 351- 358, 2019. 130 LOUER , D.; BOULTIF, A. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. Journal of Applied Crystallography, v. 24, p. 987-993, 1991. MACRAE, C. F. et al. Mercury CSD 2.0 - New Features for the Visualization and Investigation of Crystal Structures. Journal of Applied Crystallography, v. 41, p. 466-470, 2008. MADNI, et al. Synthesis, quantum chemical, in vitro acetyl cholinesterase inhibition and molecular docking studies of four new coumarin based pyrazolylthiazole nuclei. Journal of Molecular Structure, v. 1168, p. 175-186, 2018. MAJUMDAR, A. K.; BAG, S. P. Spectrophotometric determination of iron with quinolinic acid. Analytical Chemical Acta, v. 21, 1959. MALEK, et al. Solid state study of the copper(II) complex of 2-hydroxyiminopropanoic acid. New Journal of Chemistry, n. 28, p. 477-483, 2004. MASTERS, C. L. et al. Alzheimer's Disease. Nature Reviews, v. 1, p. 1 -15, 2015. MEI-LING WANG, M.-L.; ZHONG, G.-Q.; LING CHEN, L. Synthesis, Optical Characterization, and Thermal Decomposition of Complexes Based on Biuret Ligand. International Journal of Optics, 2016. MERT, S. et al. Synthesis, structureeactivity relationships, and in vitro antibacterial and antifungal activity evaluations of novel pyrazole carboxylic and dicarboxylic acid derivatives. European Journal of Medicinal Chemistry, v. 78, p. 86-96, 2014. MICHAELIS, M. L. Drugs Targeting Alzheimer’s Disease: Some Things Old and Some Things New. The Journal of Pharmacology and Experimental Therapeutics, v. 304, n. 3, p. 897- 904, 2003. MILLER, J. S.; GATTESCHI, D. Molecule-based magnets themed issue. Chemical Society Reviews, v. 40, p. 3157-3181, 2011. MINATI, L. et al. Current Concepts in Alzheimer’s Disease: A Multidisciplinary Review. American Journal of Alzheimer’s Disease & Other Dementias, v. 24, n. 2, p. 95-121, 2009. MOHAMED, T. A. et al. Infrared, Raman and NMR spectra, conformational stability, normal coordinate analysis and B3LYP calculations of 5-amino-4-cyano-3-(methylthio)-1H-pyrazole 1-carbothioamide. Journal of Molecular Structure, v. 985, p. 277–291, 2011. MOHAREB, R. M.; ABDALLAH , A. E. M.; ABDELAZIZ, M. A. New approaches for the synthesis of pyrazole, thiophene, thieno[2,3-b]pyridine, and thiazole derivatives together with their anti-tumor evaluations, v. 23, p. 564-579, 2014. 131 MORZYK-OCIEPA , et al. Crystal structure, infrared and EPR spectra and anticancer activity in vitro of the novel manganese(II) complexes of indolecarboxylic acids. Polyhedron , v. 67, p. 464–470, 2014. MUNOZ, M. C.; REAL, J. A.; HALCROW, M. A. Spin-Crossover Materials: Properties and Applications. Chichester: John Wiley & Sons, 2013. MURAOKA, T.; KINBARA, K.; AIDA, T. Reversible operation of chiral molecular scissors by redox and UV light MURRIE, M. Cobalt (II) single-molecule magnets. Chemical Society Reviws, v. 39, p. 1986- 1995, 2010. NAIR, P. V.; HUNTER, J. M. Anticholinesterases and anticholinergic drugs. Continuing Education in Anaesthesia, Critical Care & Pain, v. 4, n. 5, 2004. NARSIMHULU, M. et al. Synthesis, crystal structure, thermal, photoluminescent and magnetic properties of a new material: Na2[Ni(C2O4)2(H2O)2].6H2O, p. 155 - 161. NEESE,. Software update: the ORCA program system, version 4.0. Wires Computational Molecular Science, v. 8, p. 1327, 2018. NETTO, A. V. G.; GALVÃO, R. C. A QUÍMICA SUPRAMOLECULAR DE COMPLEXOS PIRAZÓLICOS. Química Nova, v. 31, n. 5, p. 1208-1217, 2008. NIHEI, et al. Syntheses, structures and magnetic properties of iron(II) complexes with bulky tridentate ligands. Inorganica Chimica Acta, v. 361, p. 3926–3930, 2008. NITULESCU , G. M.; DRAGHICI , C.; MISSIR, A. V. Synthesis of new pyrazole derivatives and their anticancer evaluation. European Journal of Medicinal Chemistry, v. 45, p. 4914– 4919, 2010. ONDREJKOVICOVA, I. et al. New polymeric thiocyanatoiron(II) complex with N-N`- diethylnicotinamide – Synthesis, structure, magnetic and spectral properties. Inorganica Chimica Acta, v. 361, p. 2483–2490, 2008. PALASKA, et al. Synthesis and Monoamine Oxidase Inhibitory Activities of 1‐ Thiocarbamoyl‐3,5‐diphenyl‐4,5‐dihydro‐1H‐pyrazole Derivatives. Arch Pharm Chemistry in Life Sciences, v. 341, p. 209–215, 2008. PAVIA, D. L. et al. INTRODUÇÃO À ESPECTROSCOPIA. 4ª. ed. [S.l.]: Cengage Learning. POURABDI , L. et al. Synthesis and structure-activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. European Journal of Medicinal Chemistry, v. 123, p. 298-308, 2016. 132 POURABDI, L. et al. Synthesis and structure-activity relationship study of tacrine-based pyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. European Journal of Medicinal Chemistry, v. 123, p. 298-308, 2016. PRAKASH, H. et al. Photocontrol of Spatial Orientation and DNA Cleavage Activity of Copper(II)-Bound Dipeptides Linked by an Azobenzene Derivative. Inorganic chemistry, v. 47, p. 5045-5047, 2008. PRETSCH, E.; BULMANN, P.; AFFOLTER, C. Structure Determination of Organic Compounds. 3ª. ed. New York: Springer-Verlag, 2000. RIEDERER, P.; LAUX, G. MAO-inhibitors in Parkinson’s Disease. Experimental Neurobiology, v. 20, p. 1-17, 2011. SAINT V8.34A, S. Bruker AXS, Madison, Wisconsin, USA, 2013. SAMEEM , B. et al. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer's disease. European Journal of Medicinal Chemistry, v. 128, p. 332-345, 2017. SANTOS, M. S. et al. Synthesis and antileishmanial evaluation of 1-aryl-4-(4,5-dihydro-1H imidazol2-yl)-1H-pyrazole derivatives. Bioorganic & Medicinal Chemistry Letters, v. 21, p. 7451–7454, 2011. SAWYER, D. T.; ROBERTS, J. L. Experimental Electrochemistry for Chemists. [S.l.]: Verlag John Wiley & Sons Ltd, v. 435, 1974. SHAYGAN, S. et al. Cobalt (II) Complexes with Schiff Base Ligands Derived from Terephthalaldehyde and ortho-Substituted Anilines: Synthesis, Characterization and Antibacterial Activity. Applied Sciences, v. 85, n. 8, p. 2 - 12, 2018. SHELDRICK, G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen: Germany, 1996. SHELDRICK, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallographica Section A: Found. Crystallogr, v. 64, p. 112−122, 2008. SILVA, C. P. et al. Synthesis, crystal structure, magnetic properties and DFT calculations of a mononuclear copper(II) complex: Relevance of halogen bonding for magnetic interaction. Inorganica Chimica Acta , v. 482, p. 395-401, 2018. SILVERSTEIN, M.; WEBSTER, S. Spectrometric Identification of Organic Compounds. 7ª. ed. New York: John wiley & Sons, 2005. SINHA, A. K.; VIGALOK , ; RAWAT,. Catalytic application of zinc complex of oxygen depleted 1,3-bis(pyrazole)-p-tert-butylcalix[4]arene. Tetrahedron Letters, 2018. ISSN https://doi.org/10.1016/j.tetlet.2019.02.017. 133 SKYRIANOU, K. C. et al. Structure, cyclic voltammetry and DNA-binding properties of the bis(pyridine)bis(sparfloxacinato)nickel(II) complex. Polyhedron, v. 28, p. 3265–3271, 2009. SOCRATES, G. Infrared and Raman Characteristic Group Frequencies. 3ª. ed. Baffins Lane: John Wiley & Sons, 2001. SOLDEVILA-SANMARTÍN, J. et al. Mononuclear and binuclear copper(II) bis(1,3- benzodioxole-5-carboxylate) adducts with bulky pyridines. Polyhedron, v. 126, p. 184-194, 2017. SOLOMONS, T. W. G.; FRYHLE, C. B. Química Orgânica. 10ª. ed. [S.l.]: Gen-LTC, v. 2, 2012. SURYAKIRAN, N. et al. An expeditious synthesis of 3-amino 2H-pyrazoles promoted by methanesulphonic acid under solvent and solvent-free conditions. Journal of Molecular Catalysis A: Chemical, v. 258, p. 371 - 375, 2006. SUSINDRAN, V. et al. (E)-3-(4-Chlorophenyl)-3-[3-(4-chloro-phenyl)-1H-pyrazol-1-yl]prop 2-enal. Acta Crystallographica Section E, n. 66, p. 2594 - 2595, 2010. TEPAVITCHAROVA , S. et al. Crystallization and characterization of the compounds GlyMSO4mH2O (M = Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Zn2+; m = 0, 3, 5, 6). Journal of Molecular Structure, v. 1018, p. 113 - 121, 2018. TIAN , A. et al. Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors. Transition Metal Chemistry, v. 43, p. 621 - 633, 2018. TIE-GANG, R. et al. Synthesis of Benzimidazoles Containing Pyrazole Group and Quantum Chemistry Calculation of Their Spectroscopic Properties and Electronic Structure. Journal of Fluorescence, v. 22, p. 201-212, 2012. TITIS, ; BOCA, R. Magnetostructural D Correlations in Hexacoordinated Cobalt(II) Complexes. Inorganic Chemistry, v. 50, p. 11838 -11845, 2011. TSUTOMU, I. et al. Vibrational spectra and structures of zinc carboxylates. Spectrochimica Acta Part A, v. 54, p. 1827-1836, 1998. UHRECKY, R. et al. New thiocyanato iron(II) complex with 3,5-bis(3-pyridyl)-1,2,4- thiadiazole: Synthesis, structure, magnetic and spectral properties. Inorganica Chimica Acta, v. 414, n. 33–38, 2014. WANG, L.-Y. et al. Novel supramolecular compounds with three-dimensional hydrogen bonded network [ M(H2O)6][H2L] (H4L = 1,2,4,5- benzenetetracarboxylic acid, M=MnII and 134 CoII): syntheses characterization and crystal structure. Journal of Molecular Structure, v. 610, p. 191-196, 2002. WANG, X. et al. Conformational Switching of G-Quadruplex DNA by Photoregulation. Angewandte Chemie International Edition, v. 49, p. 5305 –5309, 2010. WILLCOTT, M. R. MestRe Nova. Journal of the American Chemical Society , v. 131, n. 36, p. 13180-13180, 2009. YANG, F. et al. Assembly of dinuclear copper(II) complexes based on a tridentatepyrazol– pyridine ligand: Crystal structures and magnetic properties. Polyhedron, v. 12i8, p. 104–111, 2017. YANG, L.; POWELL, D. R.; HOUSER, R. P. Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, t4. Dalton Transactions, p. 955-967, 2007. YANG, Q.; SONG, D.; QING,. Neural changes in Alzheimer’s disease from circuit to molecule: Perspective of optogenetics. Neuroscience and Biobehavioral Reviews , v. 79, p. 110-118, 2017. YILDIZ, B.; RAY, S.; BENELLIB, T. Dithiolane ligands for semiconductor quantum dots. Journal Material Chemistry, v. 18, p. 3940–3947, 2008. Z.-M, J. et al. Diethyl 3,8-dimethyl-4,7-diazadeca-2,8-dienedioate. Acta Crystallographica Section C, v. 60, p. 642-643, 2004. ZARCHI, M. A. K.; RAHMANI, F. Regioselective and Green Synthesis of Nitro Aromatic. Compounds Using Polymer-Supported Sodium Nitrite/KHSO4. Journal of Applied Polymer Science, v. 120, p. 2830-2834, 2011. ZHANG, Q. et al. Synthesis, crystal structure, electrochemistry and in situ FTIR spectroelectrochemistry of a bisferrocene pyrazole derivative. Dalton Transactions, v. 40, p. 3510-3516, 2011. ZHANG, X. L.; SEIK WENG, N. Hexaaquacobalt(II) bis(6-hydroxypyridine-3-carboxylate). Acta Crystallographica, Section E, v. 61, p. m1140-m1141., 2005. ZHENG, F. et al. Copper(II), nickel(II) and cobalt(II) complexes of 4-cyanobenzonic acid: syntheses, crystal structures and spectral properties. Journal of Molecular Structure, v. 740, p. 147–151, 2005. ZIA-UR-REHMAN, M. et al. 5-Amino-1-phenyl-1H-pyrazole-4-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, v. 64, n. 7, 2008.por
dc.rightsAcesso Abertopor
dc.subjectCompostos de coordenaçãopor
dc.subjectEstrutura cristalinapor
dc.subjectPirazolpor
dc.subjectAcetilcolinesterasepor
dc.subjectAnisotropiapor
dc.subjectCoordination compoundseng
dc.subjectCrystal packingeng
dc.subjectPyrazoleeng
dc.subjectAcetylcholinesteraseeng
dc.subjectAnisotropy.eng
dc.subject.cnpqQuímicapor
dc.titleSíntese e caracterização de novos compostos de coordenação contendo ligantes pirazólicos funcionalizadospor
dc.title.alternativeSynthesis and characterization of new coordination compounds containing functionalized pyrazole ligandseng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Química

Files in This Item:
File Description SizeFormat 
2019 - Isac Marinho Dias.pdf2019 - Isac Marinho Dias5.71 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.