???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/2713
Full metadata record
DC FieldValueLanguage
dc.creatorDel Cistia, Catarina De Nigris-
dc.creator.Latteshttp://lattes.cnpq.br/3406739726482067por
dc.contributor.advisor1Sant'Anna, Carlos Mauricio Rabello de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2087099684752643por
dc.contributor.advisor-co1Echevarria, Aurea-
dc.contributor.referee1Graebin, Cedric Estephan-
dc.contributor.referee2Leon, Leonor Laura Pinto-
dc.contributor.referee3Romeiro, Nelilma Correia-
dc.date.accessioned2019-05-23T13:49:15Z-
dc.date.issued2010-06-11-
dc.identifier.citationDEL CISTIA, Catarina De Nigris. Modelagem molecular aplicada ao estudo de reações de inibição enzimática com aplicação potencial no controle de Leishmania amazonensis. 2010. 219 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/2713-
dc.description.resumoAs doenças provocadas por protozoários, transmitidas principalmente por insetos hematófagos, constituem o problema de saúde humana mais distribuído no mundo, e estimase que três milhões de indivíduos sofram de uma doença parasitária (principalmente pelos tripanossomatídeos e apicomplexa), responsáveis por importantes doenças humanas. Os compostos aqui estudados constituem as amidinas e os mesoiônicos, ambos sintetizados por Echevarria e colaboradores, UFRRJ. Este trabalho possui, como proposta inicial, uma procura por relações e equações que possuam boa correlação entre os valores de “ln(IC50)” calculados e os valores de “ln(IC50)” determinados experimentalmente, para determinar se o composto será ou não capaz de inibir as enzimas NO sintase (NOS) e tripanotiona redutase (TR) (em relação a enzimas pertencentes à Leishmania amazonensis). Como não há estruturas disponíveis da enzima TR para este organismo, um modelo foi feito através da técnica de modelagem por homologia, com um sequenciamento feito por laboratórios da FIOCRUZ [CASTRO-PINTO et al., 2008]. Esta estrutura foi usada para chegarmos aos resultados voltados realmente à Leishmania. As correlações foram procuradas através de 2 métodos diferentes: através do método de atracamento molecular (ou “docking”) e do método semiempírico (com hamiltoniano PM3 [STEWART, 1989a,b]). Através destes métodos, foi analisada a probabilidade destes compostos se complexarem ao sítio ativo (como um inibidor isostérico), ou aos sítios do FAD e NADPH (como um inibidor alostérico). Frente aos compostos de atividade já conhecida analisados para montar o esquema (as fenotiazinas), encontrou-se que estes compostos se complexam melhor ao sítio ativo, atuando como inibidores isostéricos; porém os mesoiônicos e amidinas se complexam melhor ao sítio do FAD, caracterizando uma inibição alostérica. Frente ao padrão de atracamento destas moléculas no respectivo sítio, alterações foram propostas em suas estruturas básicas para fazer com que fiquem ainda mais ativos. Com isto, foram encontradas equações que possuem alta correlação entre os valores de ln(IC50) experimentais e calculados, fazendo com que estas equações possam ser usadas para a síntese de estruturas mais ativas, com menos efeitos colaterais.por
dc.description.abstractParasitic protozoan diseases, transmitted by blood-feeding insects, constitute the world’s most widely spread human health problem. It is estimated that three million people suffer from a parasitic infection (mainly trypanosomatid and apicomplexan parasites), responsible for important human diseases. The compounds here studied constitute the amidines and the mesoionics, synthesized by Echevarria and collaborators, UFRRJ. This work constitute, as an initial proposal, a search for relationships and equations that has good correlation between the calculated and experimental “ln(IC50)” values, to determinate the NO synthase (NOS) and trypanothione reductase (TR) inhibition capacity of the compounds (Leishmania amazonensis enzymes). A model was made through the homology modeling method, with a sequence made by FIOCRUZ laboratories [CASTRO-PINTO et al., 2008], as there are no TR enzyme available structures for this organism. This structure was used to get results really focused on Leishmania. The correlations were searched through 2 different methods: docking and semi-empirical methods (with PM3 parametric model [STEWART, 1989a,b]). Through these methods, the compounds active site binding probability (as an isosteric inhibitor) and the FAD and NADPH site binding probability (as an allosteric inhibitor) was analyzed. With the known activity compounds (the phenothiazines) used to build the model, the results shown that these compounds are better docked at the active site, acting as an isosteric inhibitor. However, the mesoionics and amidines dock better at the FAD binding site, featuring an allosteric inhibition. Through these molecules docking pattern at this binding site, structural alterations were proposed to make them even more active. High correlation equations were found between calculated and experimental ln(IC50). These equations can now be used for more active compounds synthesis, with less side effects.eng
dc.description.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2019-05-23T13:49:15Z No. of bitstreams: 1 2010 - Catarina de Nigris Del Cistia.pdf: 6794280 bytes, checksum: 4243944fcad588067ca15f4a6c51b2e2 (MD5)eng
dc.description.provenanceMade available in DSpace on 2019-05-23T13:49:15Z (GMT). No. of bitstreams: 1 2010 - Catarina de Nigris Del Cistia.pdf: 6794280 bytes, checksum: 4243944fcad588067ca15f4a6c51b2e2 (MD5) Previous issue date: 2010-06-11eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/9874/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16076/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/22388/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/28760/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34666/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/41006/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47464/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53880/2010%20-%20Catarina%20de%20Nigris%20Del%20Cistia.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Ciências Exataspor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Químicapor
dc.relation.referencesALBUQUERQUE, M.G., HOPFINGER, A.J., BARREIRO, E.J. & ALENCASTRO, R.B.de. Four-dimensional quantitative structure-activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. Journal of Chemical Information and Modeling, 1998, v38, 5, pp 925-938. ALMEIDA, K.J., COUTINHO, K., ALMEIDA, W.B., ROCHA, W.R. & CANUTO, S.. A monte carlo quantum mechanical study of the solvatochromism of pyrimidine in water and in carbon tetrachloride. Physical Chemistry Chemical Physics, 2001, 3, pp 1583-1587. ALTSCHUL, S.F., GISH, W., MILLER, W., MYERS, E.W. & LIPMAN, D.J.. Basic local alignment search tool. Journal of Molecular Biology, 1990, 215, pp 403-410. ANDERSON, A.C.. The process of structure-based drug design. Chemistry & Biology, 2003, 10, pp 787-797. ANTUNES, A., SANTOS, A.S., SILVA, M.F., RAGI, R. & BAGNATO, V.S.. Método de Hartree-Fock: dois exemplos analiticamente solúveis. Revista Brasileira de Ensino de Física, 1999, v21, 2, pp 221-232. ATKINS, P.W. & PAULA, J.de. Físico-Química. 7ªed, vol.2. Rio de Janeiro: LTC Editora, 2004, 620 p. BAILEY, S., SMITH, K., FAIRLAMB, A.H. & HUNTER, W.N.. Substrate interactions between trypanothione reductase and N1-glutathionylspermidine disulphide at 0.28-nm resolution. Euroupean Journal of Biochemistry, 1993, v213, pp 67-75. BAIROCH, A. & BOECKMANN, B.. The SWISS PROT protein sequence data bank, recent developments. Nucleic Acids Research, 1993, v21, 13, pp 3093-3096. BAIROCH, A. & BOECKMANN, B.. The SWISS PROT protein sequence data bank. Nucleic Acids Research, 1991, 19, pp 2247-2249. BARRETT, M.P. & GILBERT, I.H.. Perspectives for new drugs against Trypanosomiasis and Leishmaniasis. Current Topics in Medicinal Chemistry, 2002, v2, 5, pp 471-482. BARRETT, M.P., MOTTRAM, J.C. & COOMBS, G.H.. Recent advances in identifying and validating drug targets in trypanosomes and leishmanias. Trends in Microbiology, 1999, v7, 2, pp 83-88. BASU, N., KOLE, L., GHOSH, A. & DAS, P.K.. Isolation of a nitric oxide synthase from the protozoan parasite, Leishmania donovani. Microbiology Letters, 1997, 156, pp 43-47. BERMAN, H.M., WESTBROOK, J., FENG, Z., GILLILAND, G., BHAT, T.N., WEISSIG, H., SHINDYALOV, I.N. & BOURNE, P.E.. The protein data bank. Nucleic Acids Research, 2000, v28, 1, pp 235-242. 145 BINGHAM, R.C., DEWAR, M.J.S. & LO, D.H.. Ground states of molecules. XXV. MIND0/3. An improved version of the MINDO semiempirical SCF-MO method. Journal of the American Chemical Society, 1975, v97, 6, p 1285. BÖHM, H.J.. LUDI: Rule-based automatic design of new substituents for enzyme inhibitor leads. Journal of Computer-Aided Molecular Design, 1992, 8, pp 593-606. BOND, C., ZHANG, Y., BERRIMAN, M., CUNNINGHAM, M., FAIRLAMB, A. & HUNTER, W.. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione, and the structure-based discovery of new natural product inhibitors. Structure, 1999, v7, 1, pp 81-89. BONET, B., LOERINCS, G. & GEFFNER, H.. A robust and fast selection mechanism for planning. Proceedings of the 14th National Conference on Artificial Intelligence (American Association for Artificial Intelligence), 1997, pp 714-719. BOUCHER, J.L., MOALI, C. & TENU, J.P.. Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. CMLS Cellular and Molecular Life Sciences, 1999, 55, pp 1015-1028. BROOIJMANS, N. & KUNTZ, I.D.. Molecular recognition and docking algorithms. Annual Reviews of Biophysical and Biomolecular Structures, 2003, 32, pp 335-373. CANTO-CAVALHEIRO, M.M., ECHEVARRIA, A., SOUZA, M.A.S., CYSNEFINKELSTEIN, L., TORRES, M.A.D. & LEON, L.L.. Effect of amidine derivatives on Leishmania amazonensis axenic amastigotes: preliminary studies of structure-activity relationships. Arzneimittel-Forschung/Drug Research, 2000, v50, II, pp 925-928. CARLSON, H.A.. Protein flexibility and drug design: how to hit a moving target. Current Opinion in Chemical Biology, 2002, 6, pp 447-452. CARLSON, H.A. & McCAMMON, J.A.. Accommodating protein flexibility in computational drug design. Molecular Pharmacology, 2000, 57, pp 213-218. CARVALHO, I., PUPO, M.T., BORGES, A.D.L. & BERNARDES, L.S.C.. Introdução à modelagem molecular de fármacos no curso experimental de química farmacêutica. Química Nova, 2003, v26, 3, pp 428-438. CASTRO-PINTO, D.B., GENESTRA, M., MENEZES, G.B., WAGHABI, M., GONÇALVES, A., CISTIA, C.D.N.De, SANT’ANNA, C.M.R., LEON, L.L. & MENDONÇA-LIMA, L. Cloning and expression of trypanothione reductase from a New World Leishmania species. Archives in Microbiology, 2008, v189, 4, pp 375-384. CASTRO-PINTO, D.B., ECHEVARRIA, A., GENESTRA, M., CYSNE-FINKELSTEIN, L. & LEON, L.. Trypanothione reductase activity is prominent in metacyclic promastigotes and axenic amastigotes of Leishmania amazonesis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, v19, 1, pp 57-63. 146 CHAMBERS, C.C., HAWKINS, G.D., CRAMER, C.J. & TRUHLAR, D.G.. Model for aqueous solvation based on class IV atomic charges and first solvation shell effects. Journal of Physical Chemistry, 1996, 100, pp 16385-16398. CHAN, C., YIN, H., GARFORTH, J., MCKIE, J.H., JAOUHARI, R., SPEERS, P., DOUGLAS, K.T., ROCK, P.J., YARDLEY, V., CROFT, S. & FAIRLAMB, A.H.. Phenothiazine inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. Journal of Medicinal Chemistry, 1998, 41, pp 148-156. CHEN, Y. & ROSAZZA, J.P.N.. A bacterial nitric oxide synthase from a Nocardia species. Biochemical e Biophysical Research Communications, 1994, v203, 2, pp 1251-1258. CHENG, Y.C. & PRUSOFF, W.H.. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical Pharmacology, 1973, v22, 23, pp 3099-3108. CHIBALE, K. Towards broadspectrum antiprotozoal agents. Arkivoc, 2002, 9, pp 93-98. CILLARI, E., ARCOLEO, F., DIELI, M., D’AGOSTINO, R., GROMO, G., LEONI, F. & MILANO, S.. The macrophage-activating tetrapeptide tuftsin induces nitric oxide synthesis and stimulates macrophages to kill Leishmania parasites in vitro. Infection and Immunity, 1994, v62, 6, pp 2649-2652. CLARK, D.E., KRAMER, R.D. & van OPDENBOSCH, N..Validation of the general-purpose TRIPOS 5.2 force-field. Journal of Computational Chemistry, 1989, 10, pp 982-1012. COSTA FILHO, P.A.da & POPPI, R.J.. Algoritmo genético em química. Química Nova, 1999, v22, 3, pp 405-411. CRAMER III, R.D., PATTERSON, D.E. & BUNCE, J.D.. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 1988, 110, pp 5959-5967. CROSS, A.R. & JONES, O.T.G.. The effect of the inhibitor diphenyleneiodonium on the superoxide generating system of neutrophils: Specific labeling of a component polypeptide of the oxidase. Biochemical Journal, 1986, 237, pp 111-116. CUNNINGHAM, A.. Parasitic adaptive mechanisms in infection by Leishmania. Experimental and Molecular Pathology, 2002, 72, pp 132-141. DEWAR, M.J.S. & WEINER, P.. Ground states of molecules. Theoretical Chemistry Accounts: Theory, Computation and Modeling, 1972, v27, 4, pp 373-375. DEWAR, M.J.S. & THIEL, W.. Ground states of molecule. 38. The MNDO method: approximation and parameters. Journal of the American Chemical Society, 1977, 99, pp 4899- 4907. DEWAR, M.J.S., ZOEBISCH, E.G., HEALY, E.F. & STEWART, J.J.P.. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 1985, 107, pp 3902-3909. 147 DEWAR, M.J.S., JIE, C. & YU, J.. SAM1; The first of a new series of general purpose quantum mechanical molecular models. Tetrahedron, 1993, v49, 23, pp 5003-5038. DeWITTE, R.S. & SHAKHNOVICH, E.I.. SMoG: de novo design method based on simple, fast and accurate free energy estimates. 1. Methodology and supporting evidence. Journal of the American Chemical Society, 1996, 118, pp 11733-11744. DREWS, J.. Drug discovery: a historical perspective. Science, 2000, 287, pp 1960-1964. DUARTE, H.A.. Índices de reatividade química a partir da teoria do funcional de densidade: formalismo e perspectivas. Química Nova, 2001, v24, 4, pp 501-508. ECHEVARRIA, A., CHUNG, K.K., GALLEMBECK, S., MACIEL, M.A., MILLER, J., RUMJANEK, V. & SIMAS, A.. Mesoionic compound. 3. Structure of the hidrochloride of 5- (4-methoxiphenyl)-4-phenyl-1,3,4-thiadiazolium-2-phenylaminide. Acta Chrystallographica, 1992, 48, pp 1471-1474. ELDRIDGE, M.D., MURRAY, C.W., AUTON, T.R., PAOLINI, G.V. & MEE, R.P.. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, 1997, 11, pp 425-445. FLAWIÁ, M.M., TÉLLEZ-IÑON, M.T. & TORRES, H.N.. Signal transduction mechanisms in Trypanosoma cruzi. Parasitology Today, 1997, v13, 1, pp 30-33. FRÖHLICH, L.G., KOTSONIS, P., TRAUB, H., TAGHAVI-MOGHADAM, S., ALMASOUDI, N., HOFMANN, H., STROBEL, H., MATTER, H., PFLEIDERER, W. & SCHMIDT, H.. Inhibition of neuronal NO synthase by 4-amino pteridine derivatives: structure-activity relationship of antagonists of (6R)-5,6,7,8-tetrahydrobiopterin cofactor. Journal of Medicinal Chemistry, 1999, v42, 20, pp 4108-4121. FYFE, P.K., OZA, S.L., FAIRLAMB, A.H. & HUNTER, W.N.. Leishmania trypanothione synthetase-amidase structure reveals a basis for regulation of conflicting synthetic and hydrolytic activities. Journal of Biological Chemistry, 2008, v283, 25, pp 17672-17680. GATLEY, S.J. & SHERRATT, H.S.A.. The effects of diphenyleneiodonium on mitochondrial reactions. Relation of binding of diphenylene [125I]iodonium to mitochondria to the extent of inhibition of oxygen uptake. Biochemical Journal, 1976, 158, pp 307-315. GENESTRA, MARCELO. Proteína quinase A e óxido nítrico sintase como alvos de derivados amidínicos anti-Leishmania. Tese de Doutorado, FIOCRUZ 2002. GENESTRA, M., ECHEVARRIA, A., CYSNE-FINKELSTEIN, L., VIGNÓLIO-ALVES, L. & LEON, L.L.. Effect of amidine derivatives on nitric oxide production by Leishmania amazonensis promastigotes and axenic amastigotes. Nitric Oxide, 2003, 8, pp 1-6. GENESTRA, M., GUEDES-SILVA, D., SOUZA, W.J.S., CYSNE-FINKELSTEIN, L., SOARES-BEZERRA, R.J., MONTEIRO, F.P. & LEON, L.L.. Nitric oxide synthase (NOS) characterization in Leishmania amazonensis axenic amastigotes. Archives of Medical Research, 2006a, 37, pp 328-333. 148 GENESTRA, M., SOUZA, W.J.S., GUEDES-SILVA, D., MACHADO, G.M.C., CYSNEFINKELSTEIN, L., SOARES-BEZERRA, R.J., MONTEIRO, F.P. & LEON, L.L.. Nitric oxide biosynthesis by Leishmania amazonensis promastigotes containing a high percentage of metacyclic forms. Archives in Microbiology, 2006b, 185, pp 348-354. de GENST, E., ARESKOUG, D., DECAMNIERE, K., MUYLDERMANS, S. & ANDERSSON, K.. Kinetic and affinity predictions of a protein-protein interaction using multivariate experimental design. Journal of Biological Chemistry, 2002, v277, 33, pp 29897–29907. GERBER, N.C., RODRIGUEZ-CRESPO, I., NISHIDA, C.R. & MONTELLANO, P.R.O.. Active site topologies and co-factor mediated conformational changes of nitric oxide synthases. Journal of Biological Chemistry, 1997, v272, 10, pp 6285-6290. GOHLKE, H., HENDLICH, M. & KLEBE, G.. Knowledge-based scpring function to predict protein-ligand interactions. Journal of Molecular Biology, 2000, 295, pp 337-356. GOHLKE, H. & KLEBE, G.. Approaches to description and prediction of the binding affinity of small-molecule ligands to macromolecular receptors. Angewandte Chemie International Edition, 2002, 41, pp 2644-2676. GOMES, I.N., CALABRICH, A.F., TAVARES, R.S., WIETZERBIN, J., FREITAS, L.A. & VERAS, P.S.. Differential properties of CBA/J mononuclear phagocytes recovered from an inflammatory site and probed with two different species of Leishmania. Microbes and Infection, 2003, 5, pp 251-260. GOODFORD, P.J.. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. Journal of Medicinal Chemistry, 1985, 28, pp 849-857. GOODMAN, J.L., PAGEL, M.D. & STONE, M.J.. Relationships between protein structure and dynamis from a database of NMR-derived backbone order parameters. Journal of Molecular Biology, 2000, 265, pp 963-978. GOSPER, J. J.. A Babel windows interface program. Versão V.1.03b b2 bit, 1998. GRIMALDI JR., G. & TESH, R.B.. Leishmaniases of the New World: Current Concepts and Implications for Future Research. Clinical Microbiology Reviews, 1993, v6, 3, pp 230-250. GROOT, B.L.de & GRUBMÜLLER, H.. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science, 2001, 294, pp 2353-2357. GUEX, N., DIEMAND, A. & PEITSCH, M.C.. Protein modeling for all. Trends in Biochemical Science, 1999, 24, pp 364-367. GUEX, N. & PEITSCH, M.C.. Swiss-Model and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18, pp 2714-2723. 149 van GUNSTEREN, W., BILLETER, S., EISING, A., HÜNENBERGER, P., KRÜGER, P., MARK, A., SCOTT, W. & TIRONI, I.. Biomolecular Simulations: The GROMOS96 Manual and User Guide. VdF Hochschulverlag ETHZ, Zürich, 1996. HAILU, A., MUSA, A.M., ROYCE, C. & WASUNNA, M. Visceral leishmaniasis: new health tools are needed. PloS Medicine, 2004, v2, 7, pp 590-594. HALGREN, T.A.. Merck molecular force field. I: Basis, form, scope, parameterization and performance of MMFF94. Journal of Computational Chemistry, 1996, 17, pp 490-519. HALPERIN, I., MA, B., WOLISON, H. & NUSSINOV, R.. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function and Genetics, 2002, 47, pp 409-443. HAMILTON, C.J., SARAVANAMUTHU, A., EGGLESTON, I.M. & FAIRLAMB, A.H.. Ellman’s-reagent-mediated regeneration of trypanothione in situ: substrate economical microplate and time-dependent inhibition assays for trypanothione reductase. Biochemical Journal, 2003, 369, pp 529-537. HANCOCK, J.T. & JONES, O.T.G.. The inhibition by diphenyleneiodonium and its analogues of superoxide generation by macrophages. Biochemical Jornal, 1987, 242, pp 103- 107. HENDERSON, G.B., MURGOLO, N.J., KURIYAN, J., OSAPAY, K., KOMINOS, D., BERRY, A., SCRUTTON, N.S., HINCHLIFFE, N.W., PERHAM, R.N. & CERAMI, A.. Engineering the substrate specificity of glutathione reductase toward that of trypanothione reduction. Proceedings Of The National Academy Of Sciences, 1991, v88, pp 8769-8773. HERWALDT, B.L.. Leishmaniasis. The Lancet, 1999, 354, pp 1191-1199. HOLLAND, P.C., CLARK, M.G., BLOXHAM, D.P. & LARDY, H.A.. Mechanism of action of the hypoglycemic agent diphenyleneiodonium. Journal of Biological Chemistry, 1973, 242, pp 103-107. <http://chemdb.niaid.nih.gov/struct_search/lr/LR_HIV_EI.asp?LITREF=3905>. Acesso em agosto/2006. <http://faculty.vetmed.ucdavis.edu/faculty/gclanzaro/lab/images/sandflyimagelarge.jpg>. Acesso em agosto/2009. <http://www.afpmb.org/netpub/server.np?find&catalog=catalog&template=detail.np&field=it emid&op=matches&value=961&site=Bravado>. Acesso em julho/2006. <http://www.anvisa.gov.br/medicamentos/dcb/tabela_modificados.pdf>. Acesso em junho/2006. <http://www.axxora.com/obesity_diabetes-ALX-270-204/opfa.1.1.ALX-270204.1637.4.1. html>. Acesso em agosto/2006. <http://www.ch.embnet.org/software/TCoffee.html>. Acesso em fevereiro/2007. 150 <http://www.chemistry.org/portal/a/c/s/1/acsdisplay.html?DOC=patentwatch%5Carchive%5 C050905_patentwatch.html>. Acesso em julho/2006. <http://www.fmt.am.gov.br/areas/entomologia/imagens/imagem009.jpg>. Acesso em agosto/2009. <http://www.icc.fiocruz.br/cgi/cgilua.exe/sys/start.htm?sid=37>. Acesso em setembro/2009. <http://www.infektionsbiologie.ch/seiten/modellparasiten/seiten/leishmania/steckbrief_leish .html>. Acesso em junho/2006. <http://www.keele.ac.uk/depts/aep/images/rdw%20phleb.jpg>. Acesso em agosto/2009. <http://www.kit.nl/frameset.asp?/biomedical_research/html/leishmaniasis.asp&frnr=1&>. Acesso em julho/2006. <http://www.levriers.net/leishmaniose.html>. Acesso em julho/2006. <http://www.mgm.ufl.edu/~gulig/mmid/>. Acesso em julho/2006. <http://www.msu.edu/course/zol/316/htm>. Acesso em junho/2006. <http://www.parasitesandvectors.com/content/figures/1756-3305-2-S1-S1-3.jpg>. Acesso em agosto/2009. <http://www.rcsb.org/pdb/>. Acesso em agosto/2004, setembro/2005, fevereiro/2006 e janeiro/2010. <http://www.sanger.ac.uk>. Acesso em fevereiro/2007. <http://www.ucm.es/info/parasito/aTLAS.htm>. Acesso em junho/2006. <http://www.unine.ch/zool/para/guerin/index.html>. Acesso em julho/2006. <http://www.wehi.edu.au/research/divisions/inf/labs/handman/leishmaniasis.html>. Acesso em agosto/2006. <http://www.wehi.edu.au/research/overview/inf.html>. Acesso em julho/2006. <http://www.who.int/leishmaniasis/surveillance/slides_manual/en/index3.html>. Acesso em junho/2010. <http://www.who.int/leishmaniasis/surveillance/ slides_manual/en/index8.html>. Acesso em junho/2010. JACKSON, S.A., SAHNI, S., LEE, L., LUO, Y., NIEDUZAK, T.R., LIANG, G., CHIANG, Y., COLLAR, N., FINK, D., HE, W., LAOUI, A., MERRILL, J., BOFFEY, R., CRACKETT, P., REES, B., WONG, M., GUILLOTEAU, J.P., MATHIEU, M. & REBELLO, S.S.. Design, synthesis and characterization of a novel class of coumarin-based inhibitors of inducible nitric oxide synthase. Bioorganic and Medicinal Chemistry, 2005, v13, pp 2723-2739. 151 JENSEN, F.. Introduction to Computational Chemistry. West Sussex: John Wiley & Sons, 1999, 429 p. JHA, T.K., SUNDAR, S., THAKUR, C.P., BACHMANN, P., KARBWANG, J., FISCHER, C., VOSS, A. & BERMAN, J.. Miltefosine, an oral agent, for the treatment of indian visceral leishmaniasis. The New England Journal of Medicine, 1999, v341, 24, pp 1795-1800. JIA, O., TINGWEI, C., HUANG, M., LI, H., XIAM, M., POULOS, T. & WANG, P.. Isoform selective substrates of nitric oxide synthase. Journal of Medicinal Chemistry, 2003, 10.1021. JONES, G., WILLETT, P. & GLEN, R.C.. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. Journal of Molecular Biology, 1995a, 254, pp 43-53. JONES, G., WILLETT, P. & GLEN, R.C.. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. Journal of Computer-Aided Molecular Design, 1995b, 9, pp 532-549. JONES, G., WILLETT, P., GLEN, R.C., LEACH, A.R. & TAYLOR, R.. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 1997, 267, pp 727-748. JÓNSDÓTTIR, S.Ó., JØRGENSEN, F.S. & BRUNAK, S.. Prediction methods and databases within chemoinformatics: emphasis on drugs and drug candidates. Bioinformatics, 2005, v21, 10, pp 2145-2160. JORGENSEN, W.L.. The many roles of computation in drug discovery. Science, 2004, v303, 5665, pp 1813-1818. KHAN, M.O., AUSTIN, S.E., CHAN, C., YIN, H., MARKS, D., VAGHJIANI, S.N., KENDRICK, H., YARDLEY, V., CROFT, S.L. & DOUGLAS, K.T.. Use of an additional hydrophobic binding site, the Z site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazides. Journal of Medicinal Chemistry, 2000, 43, pp 3148-3156. KITCHEN, D.B., DECORNEZ, H., FURR, J.R. & BAJORATH, J.. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews in Drug Discovery, 2004, 3, pp 935-949. KOOLMAN, J. & ROEHM, K.H.. Color Atlas of Biochemistry. 2ªed. New York: Thieme, 2005. 467p. KORB, O., STÜTZLE, T. & EXNER, T.E.. An ant colony optimization approach to flexible protein-ligand docking. Swarm Intelligence, 2007, v1, 2, pp 115-134. KORB, O., STÜTZLE, T. & EXNER, T.E.. Empirical scoring function for advanced proteinligand docking with PLANTS. Journal of Chemical Information and Modeling, 2009, v49, 1, pp 84-96. 152 KOTSONIS, P., FRÖHLICH, L.G., RAMAN, C.S., LI, H., BERG, M., GERWIG, R., GROEHN, V., KANG, Y., AL-MASOUDI, N., TAGHAVI-MOGHADAM, S., MOHR, D., MÜNCH, U., SCHNABEL, J., MARTASEK, P., MASTERS, B., STROBEL, H., POULOS, T., MATTER, H., PFLEIDERER, W. & SCHMIDT, H.H.. Structural basis for pterin antagonism in nitric-oxide synthase. Journal of Biological Chemistry, 2001, 52, pp 49133- 49141. KRAMER, B., RAREY, M. & LENGAUER, T.. Evaluation of the FlexX incremental construction algorithm for protein-ligand docking. Proteins, 1999, 37, pp 228-241. KRAUTH-SIEGEL, R.L. & INHOFF, O.. Parasite-specific trypanothione reductase as a drug target molecule. Parasitology Research, 2003, 90, pp 77-85. KRIEGER, S., SCHWARZ, W., ARIYANAYAGAM, M.R., FAIRLAMB, A.H., KRAUTHSIEGEL, R.L. & CLAYTON, C.. Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Molecular Microbiology, 2000, v35, 3, pp 542-552. KUNTZ, I.D., BLANEY, J.M., OATLEY, S.J., LANGRIDGE, R. & FERRIN, T.E.. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, 1982, 161, pp 269-288. KURIYAN, J., KONG, X., KRISHNA, T., SWEET, R., MURGOLO, N., FIELD, H., CERAMI, A. & HENDERSON, G.. X-ray structure of trypanothione reductase from Crithidia fasciculata at 2,4-Å resolution. Proceedings of the National Academy of Sciences, 1991, 88, pp 8764-8768. KWON, N.S., NATHAN, C. & STUEHR, D.. Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages. Journal of Biological Chemistry, 1989, v264, 34, pp. 20496-20501. LANSIAUX, A., TANIOUS, F., MISHAL, Z., DASSONNEVILLE, L., KUMAR, A., STEPHENS, C.E., HU, Q., WILSON, W.D., BOYKIN, D.W. & BAILLY, C.. Distribution of furamidine analogues in tumor cells: targeting of the nucleus or mitochondria depending on the amidine substitution. Cancer Research, 2002, 62, pp 7219-7229. LEACH, A.R.. Molecular Modeling: Principles and Applications. 2ªed. New Jersey: Prentice Hall, 2001, 744 p. LEVINE, I.N.. Physical Chemistry. 4ªed. Singapore: McGraw Hill International Editions, 1995, 901 p. LEVINE, I.N.. Quantum Chemistry. 5ªed. New Jersey: Prentice Hall, 2000. LIN, J.H. & LU, A.I.H.. Role of pharmacokinetics and metabolism in drug discovery and development. Pharmacological Reviews, 1997, v49, 4, pp 403-449. LOMBARDINO, J.G. & LOWE III, J.A.. The role of the medicinal chemist in drug discovery – then and now. Nature Reviews in Drug Discovery, 2004, 3, pp 853-862. 153 LUCASIUS, C.B. & KATEMAN, G.. Genetic algorithms for large-scale optimization in chemometrics: An application. Trends in Analytical Chemistry, 1991, v10, 8, pp 254-261. MARTINY, A. & VANNIER-SANTOS, M.A.. Leishmania-host interplay: the everlasting rivalry. Medicinal Chemistry Reviews, 2005, v2, 3, pp 231-249. MASSEY, V.. The chemical and biological versatility of riboflavin. Biochemical Society Transactions, 2000, v28, 4, pp 283-296. MATE, M.J., ORTIZ-LOMBARDIA, M., BOITEL, B., HAOUZ, A., TELLO, D., SUSIN, S.A., PENNINGER, J., KROEMER, G. & ALZARI, P.M.. The crystal structure of the mouse apoptosis-inducing factor AIF. Nature Structural Biology, 2002, v9, 6, pp 442-446. McCONKEY, B.J., SOBOLEV, V. & EDELMAN, M.. The performance or current methods in ligand-protein docking. Current Science, 2002, 83, pp 845-856. MENNUCCI, B., TONIOLO, A. & TOMASI, J.. Ab initio study of the electronic excited states in 4-(N,N-dimethylamino)benzonitrile with inclusion of solvent effects: the internal charge transfer process. Journal of the American Chemical Society, 2000, 122, pp 10621- 10630. METZLER, D.E.. Biochemistry: The chemical reactions of the living cells. 2ªed. v.1 e 2. Elsevier Academic Press, 2003. 1900 p. MINISTÉRIO DA SAÚDE (BRASIL). Secretaria de Vigilância em Saúde. Manual de Vigilância da Leishmaniose Tegumentar Americana. 2ªed. Brasília: Editora do Ministério da Saúde, 2007. 182p. MIRAMAR, M.D., COSTANTINI, P., RAVAGNAN, L., SARAIVA, L.M., HAOUZI, D., BROTHERS, G., PENNINGER, J.M., PELEATO, M.L., KROEMER, G. & SUSIN, S.A.. NADH oxidase activity of mitochondrial apoptosis-inducing factor. Journal of Biological Chemistry, 2001, v276, 19, pp 16391–16398. MORGON, N.H.. Computação em química teórica: informações técnicas. Química Nova, 2001, v24, 5, pp 676-682. MORRIS, G.M., GOODSELL, D.S., HALLIDAY, R.S., HUEY, R., HART, W.E., BELEW, R.K. & OLSON, A.J.. Automated docking using a Lamarckian Genetic Algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 1998, 19, pp 1639-1662. MUEGGE, I. & MARTIN, Y.C.. A general and fast scoring function for protein-ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, 1999, 42, pp 791-804. MULLER, S., LIEBAU, E., WALTER, R.D. & KRAUTH-SIEGEL, R.L.. Thiol-based redox metabolism of protozoan parasites. Trends in Parasitology, 2003, v19, 7, pp 320-328. 154 MURRAY, R.K., GRANNER, D.K., MAYES, P.A. & RODWELL, V.W.. Harper’s Illustrated Biochemistry. 26ªed. United States of America: Lange Medical Books/McGraw- Hill Companies Inc., 2003. 693 p. NELSON, D.L. & COX, M.M.. Lehninger’s Principles of Biochemistry. 4ªed. New York: W. H. Freeman & Company, 2005. 1119 p. NGUYEN, B., HAMELBERG, D., BAILLY, C., COLSON, P., STANEK, J., BRUN, R., NEIDLE, S. & WILSON, W.D.. Characterization of a novel DNA minor-groove complex. Biophysical Journal, 2004, 86, pp 1028-1041. NISHIDA, C.R. & MONTELLANO, P.O.. Electron transfer and catalytic activity of nitric oxide synthases: chimeric constructs of the neuronal, inducible, and endothelial isoforms. Journal of Biological Chemistry, 1998, v273, 10, pp 5566-5571. NISHIDA, C.R. & MONTELLANO, P.O.. Autoinhibition of endothelial nitric-oxide synthase: identification of an electron transfer control element. Journal of Biological Chemistry, 1999, v274, 21, pp 14692-14698. NOREL, R., WOLFSON, H. & NUSSINOV, R.. Small molecular recognition: solid angles surface representation and shape complementarity. Combinatorial Chemistry and High Throughput Screening, 1999, 2, pp 177-191. NORRIS, D.A., LEESMAN, G.D., SINKO, P.J. & GRASS, G.M.. Development of predictive pharmacokinetic simulation models for drug discovery. Journal of Controlled Release, 2000, 65, pp 55-62. NOTREDAME, C., HIGGINS, D. & HERINGA, J.. T-Coffee: a novel method for multiple sequence alignments. Journal of Biological Chemistry, 2000, 302, pp 205-217. OHLSTEIN, E.H., RUFFOLO JR., R.R. & ELLIOTT, J.D.. Drug discovery in the next millennium. Annual Review of Pharmacology and Toxicology, 2000, 40, pp 177-191. OLIVEIRA, F.G., SANT’ANNA, C.M.R., CAFFARENA, E.R., DARDENNE, L.E. & BARREIRO, E.J.. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & Medicinal Chemistry, 2006, 14, pp 6001–6011. OLIVEIRA, FERNANDA GUEDES. Estudo do perfil de interação de fosfodiesterase 4 com seus inibidores. Dissertação de Mestrado, IQ/UFRJ 2005. OLIVEIRA, S., FONSECA, S., ROMÃO, P., FERREIRA, S. & CUNHA, F.. Nitric oxide mediates the microbicidal activity of eosinophils. Memórias do Instituto Oswaldo Cruz, 1997, v92, 2, pp 233-235. OLLIS, W.D., STANFORTH, S.P. & RAMSDEN, C. A.. Heterocyclic mesomeric betaines. Tetrahedron, 1985, v41, 12, pp 2239-2329. OPREA, T.I. & MATTER, H.. Integrating virtual screening in lead discovery. Current Opinion in Chemical Biology, 2004, 8, pp 349-358. 155 PANT, K., BILWES, A., ADAK, S., STUEHR, D. & CRANE, B.. Structure of a nitric oxide synthase heme protein from Bacillus subtilis. Biochemistry, 2002, 41, pp 11071-11079. PANTKE, M.M., REIF, A., VALTSCHANOFF, J.G., SHUTENKO, Z., FREY, A., WEINBERG, R.J., PFLEIDERER, W. & SCHMIDT, H.. Pterin interactions with distinct reductase activities of NO synthase. Biochemical Journal, 2001, 356, pp 43-51. PAVETO, C., PEREIRA, C., ESPINOSA, J., MONTAGNA, A., FARBER, M., ESTEVA, M., FLAWIÁ, M. & HECTOR, T.. The nitric oxide transduction pathway in Trypanosoma cruzi. Journal of Biological Chemistry, 1995, v28, 14, pp 16576-16579. PEITSCH, M. C.. Protein modeling by e-mail. Bio/Technology, 1995, 13, pp 658-660. PÉREZ-VICTORIA, J.M., PÉREZ-VICTORIA, F.J., PARODI-TALICE, A., JIMENEZ, I.A., RAVELO, A.G., CASTANYS, S. & GAMARRO, F.. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrobial Agents and Chemotherapy, 2001, v45, 9, pp 2468-2474. PLATT, D.E., PARIDA, L., GAO, Y., FLORATOS, A. & RIGOUTSOS, I.. QSAR in grossly underdetermined systems: Opportunities and issues. IBM Journal of Research & Development, 2001, 45, pp 533-544. PONTE-SUCRE, A.. Physiological consequences of drug resistance in Leishmania and their relevance for chemotherapy. Kinetoplastid Biology and Disease, 2003, v2, 14, 10p. POPLE, J.A., SANTRY, D.P. & SEGAL, G.A.. Approximate self-consistent molecular orbital theory. I. Invariant procedures. Journal of Chemical Physics, 1965, 43, pp 129-135. POPLE, J.A. & SEGAL, G.A.. Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap. Journal of Chemical Physics, 1965, 43, pp 136-149. PROSKURYAKOV, S., KONOPLYANNIKOV, A., SKVORTSOV, V., MANDRUGIN, A. & FEDOSEEV, V.. Structure and activity of NO synthase inhibitors specific to the L-arginine binding site. Biochemistry-Moscow, 2005, v70, 1, pp 8-23. RAGAN, C. I. & BLOXHAM, D. P.. Specific labeling of a constituent polypeptide of bovine heart mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone reductase by the inhibitor diphenyleneiodonium. Biochemical Journal, 1977, 163, pp 605-615. RAMACHANDRAN, G.N. & SASISKEHARAN, V.. Conformation of polypeptides and proteins. Advances in Protein Chemistry, 1968, 23, pp 283-256. RAMAN, C.S., LI, H., MARTÁSEK, P., KRÁL, V., MASTERS, B.S.S. & POULOS, T.L.. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell, 1998, 95, pp 939-950. RAREY, M., KRAMER, B., LENGAUER, T. & KLEBE, G.. A fast flexible docking method using an incremental construction algorithm. Journal of Molecular Biology, 1996, 261, pp 470-489. 156 RATH, S., TRIVELIN, L.A., IMBRUNITO, T.R., TOMAZELA, D.M., de JESÚS, M.N., MARZAL, P.C., ANDRADE Jr, H.F. & TEMPONE, A.G.. Antimoniais empregados no tratamento da leishmaniose: estado da arte. Química Nova, 2003, v26, 4, pp 550-555. REIS, CAMILLA MORETTO DOS. Síntese, utilizando metodologias alternativas, e avaliação citotóxica de compostos mesoiônicos da classe 1,3,4-tiadiazólio-2-aminida. Dissertação de Mestrado, UFRRJ, 2008. ROCHA, G.B., FREIRE, R.O., SIMAS, A.M. & STEWART, J.J.P.. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. Journal of Computational Chemistry, 2006, v27, 10, pp 1101-1111. ROGERS, D.W.. Computational Chemistry Using the PC. 3ªed. Hoboken, NJ: John Wiley & Sons Inc., 2003. 349p. ROMEIRO, N.C., ALBUQUERQUE, M.G., ALENCASTRO, R.B.de, RAVI, M. & HOPFINGER, A.J.. Construction of 4D-QSAR models for use in the design of novel p38- MAPK inhibitors. Journal of Computer-Aided Molecular Design, 2005, v19, 6, pp 385-400. SARAVANAMUTHU, A., VICKERS, T., BOND, C., PETERSON, M., HUNTER, W. & FAIRLAMB, A.. Two interacting binding sites for quinacrine derivatives in the active site of trypanothione reductase. Journal of Biological Chemistry, 2004, v279, 28, pp 29493-29500. SAYLE, R.A. & MILNER-WHITE, E.J.. RasMol: biomolecular graphics for all. Trends in Biochemical Sciences, 1995, v20, 9, pp 374-376. SCHNEIDER, G. & BÖHM, H-J.. Virtual screening and fast automated docking methods. Drug Discovery Today, 2002, v7, 1, pp 64-70. SCHWEDE, T., KOPP, J., GUEX, N. & PEITSCH, M.C.. Swiss-Model: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31, pp 3381-3385. SEARLE, M.S., WILLIAMS, D.H. & GERHARD, U.. Partitioning of free energy contributions in the estimation of binding constants: residual motions and consequences for amide-amide hydrogen bond strengths. Journal of the American Chemical Society, 1992, 114, pp 10697-10704. SEARLE, M.S. & WILLIAMS, D.H.. The cost of conformational order: entropy changes in molecular associations. Journal of the American Chemical Society, 1992, 114, pp 10690- 10697. SILVA, GUSTAVO ROCHA. Estudo da reativação da acetilcolinesterase inibida por organofosforados: análise conformacional da molécula de HI-6 e simulação da reação de desfosforilação. Dissertação de Mestrado, IME 2005. SILVA, E., CANTO-CAVALHEIRO, M., BRAZ, V., CYSNE-FINKELSTEIN, L., LEON, L. & ECHEVARRIA, A.. Synthesis, and biological evaluation of new 1,3,4-thiadiazolium-2- phenylamine derivatives against Leishmania amazonensis promastigotes and amastigotes. European Journal of Medicinal Chemistry, 2002, 37, pp 979-984. 157 SOARES-BEZERRA, R.J., SILVA, E.F., ECHEVARRIA, A., GOMES-DA-SILVA, L., CYSNE-FINKELSTEIN, L., MONTEIRO, F.P., LEON, L.L. & GENESTRA, M.. Effect of mesoionic 4-phenyl-5-(cinnamoyl)-1,3,4-thiadiazolium-2-phenylamine chloride derivative salts on the activities of the nitric oxide synthase and arginase of Leishmania amazonensis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2008, v23, 3, pp 328–333. SOUTHAN, G., SZABO, C., O’CONNOR, M., SALZMAN, A. & THIEMERMANN, C.. Amidines are potent inhibitors of nitric oxide synthases: preferential inhibition of the inducible isoform. European Journal of Pharmacology, 1995, v30, 291, pp 311-318. SOUZA, MARCO ANTÔNIO SOARES DE. Estudo e desenvolvimento do modelo teórico de inibição da enzima tripanotiona redutase de Leishmania spp. por uma classe de NN’- difenilbenzamidinas. Tese de Doutorado, PPGQO/UFRRJ 2007. SOUZA, A.C., FERREIRA, C.V., JUCÁ, M.B. & AOYAMA, H.. Riboflavina: uma enzima multifuncional. Química Nova, 2005, v28, 5, pp 887-891. STEPHENS, C., TANIOUS, F., KIM, S., WILSON, W.D., SCHELL, W., PERFECT, J., FRANZBLAU, S. & BOYKIN, D.. Diguanidino and “reversed” diamidino 2,5-diarylfurans as antimicrobial agents. Journal of the American Chemical Society, 2001, 44, pp 1741-1748. STEWART, J.J.P.. Optimization of parameters for semi-empirical methods. I Method. Journal of Computational Chemistry, 1989a, v10, 2, pp 209-220. STEWART, J.J.P.. Optimization of parameters for semiempirical methods. II Applications. Journal of Computational Chemistry, 1989b, v10, 2, pp 221-264. STEWART, J.J.P.. Reply to "Comments on a comparison of AM1 with the recently developed PM3 method". Journal of Computational Chemistry, 1990, v11, 4, pp 543-544. STEWART, J.J.P.. Optimization of parameters for semiempirical methods. III Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. Journal of Computational Chemistry, 1991, v12, 3, pp 320-341. STEWART, J.J.P.. Application of localized molecular orbitals to the solution of semiempirical self-consistent field equations. International Journal of Quantum Chemistry, 1996, v58, 2, pp 133-146. STEWART, J.J.P.. Comparison of the accuracy of semiempirical and some DFT methods for predicting heats of formation. Journal of Molecular Modeling, 2004, 10, pp 6-12. STEWART, J.J.P.. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, 2007, 13, pp 1173-1213. STOLL, V.S., SIMPSON, S.J., KRAUTH-SIEGEL, L., WALSH, C.T. & PAI, E.F.. Glutathione Reductase Turned into Trypanothione Reductase: Structural Analysis of an Engineered Change in Substrate Specificity. Biochemistry, 1997, 36, pp 6437-6447. 158 STRICKLAND, C.L., PUCHALSKI, R., SAVVIDES, S.N. & KARPLUS, P.A.. Overexpression of Crithidia fasciculata trypanothione reductase and crystallization using a novel geometry. Acta Crystallographica Biological Crystallography, 1995, v51, 3, pp 334- 341. STUEHR, D.J., FASEHUN, O.A., KWON, N.S., GROSS, S.S., GONZALEZ, J.A., LEVI, R. & NATHAN, C.F.. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. The FASEB Journal, 1991, 5, pp 98-103. SURLES, M.C., RICHARDSON, J.S., RICHARDSON, D.C. & BROOKS, F.P.. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system. Protein Science, 1994, 3, pp 198-210. TAYLOR, M.C., KELLY, J.M., CHAPMAN, C.J., FAIRLAMB, A.H. & MILES, M.A.. The structure, organization, and expression of the Leishmania donovani gene encoding trypanothione reductase. Molecular and Biochemical Parasitology, 1994, 64, pp 293-301. TEAGUE, S.J.. Implications on protein flexibility for drug discovery. Nature Reviews: Drug Discovery, 2003, 2, pp 527-541. TIDWELL, R., JONES, S., NAIMAN, N., BERGER, L., BRAKE, W., DYKSTRA, C. & HALL, J.. Activity of cationically substituted bis-benzimidazoles against experimental Pneumocystis carinii pneumonia. Antimicrobial Agents and Chemotherapy, 1993, v37, 8, pp 1713-1716. TOMASI, J., MENNUCCI, B. & CAMMI, R.. Quantum mechanical continuum solvation models. Chemical Reviews, 2005, v105, 8, pp 2999-3094. VANNIER-SANTOS, M.A., MARTINY, A. & SOUZA, W.. Cell biology of Leishmania spp.: invading and evading. Current Pharmaceutical Design, 2002, 8, pp 297-318. VEDANI, A. & DOBLER, M.. 5D-QSAR: The key for simulating induced fit? Journal of Medicinal Chemistry, 2002, v45, 11, pp 2139-2149. VEDANI, A., DOBLER, M. & LILL, M.A.. Combining protein modeling and 6D-QSAR: Simulating the binding of structurally diverse ligands to the estrogen receptor. Journal of Medicinal Chemistry, 2005, v48, 11, pp 3700–3703. VERDONK, M.L., COLE, J.C., HARTSHOM, M.J., MURRAY, C.W. & TAYLOR, R.D.. Improved protein-ligand docking using GOLD. Proteins, 2003, 52, pp 609-623. VOET, D., VOET, J.G. & PRATT, C.W.. Fundamentos de bioquímica: a vida em nível molecular. 2ªed. Porto Alegre: Editora ArtMed, 2008. 1264p. WALLER, R.F. & MCCONVILLE, M.J.. Developmental changes in lysosome morphology and function Leishmania parasites. International Journal of Parasitology, 2002, 32, pp 1435- 1445. 159 WANG, J., ROUSSEAU, D.L., ABU-SOUD, H.M. & STUEHR, D.J.. Heme coordination of NO in NO synthase. Proceedings of the National Academy of Sciences, 1994a, 91, pp 10512- 10156. WANG, S., MILNE, G.W.A., NICKLAUS, M.C., MARQUEZ, V.E., LEE, J. & BLUMBERG, P.M.. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, 1994b, 37, pp 1326-1338. WEINER, S.J., KOLLMAN, P.A., NGUYEN, D.T. & CASE, D.A.. An all-atom force field for simulations of proteins and nucleic acids. Journal of Computational Chemistry, 1986, 7, 252. WILLIAMS, D.A. & LEMKE, T.L.. Foye’s Principles of Medicinal Chemistry. 5ªed. Philadelphia: Lippincott Williams & Wilkins, 2002. 1114 p. YALÇÌN, I., ÖREN, I., TEMIZ, Ö. & ŞENER, E.A.. QSARs of some novel isosteric heterocyclics with antifungal activity. Acta Biochimica Polonica, 2000, v47, 2, pp 481-486. ZANI, C. & FAIRLAMB, A.. 8-methoxy-naphtho[2,3-b]thiophen-4,9-quinone, a noncompetitive inhibitor of trypanothione reductase. Memórias do Instituto Oswaldo Cruz, 2003, v98, 4, pp 565-568. ZHANG, Y., BOND, C., BAILEY, S., CUNNINGHAM, M., FAIRLAMB, A. & HUNTER, W.. The crystal structure of trypanothione reductase from the human pathogen Trypanosoma cruzi at 2.3 Å resolution. Protein Science, 1996, 5, pp 52-61.por
dc.rightsAcesso Abertopor
dc.subjectLeishmania amazonensispor
dc.subjectmodelagem molecularpor
dc.subjectmesoiônicospor
dc.subjectamidinaspor
dc.subjectLeishmania amazonensiseng
dc.subjectmolecular modelingeng
dc.subjectmesoionicseng
dc.subjectamidineseng
dc.subject.cnpqQuímicapor
dc.titleModelagem molecular aplicada ao estudo de reações de inibição enzimática com aplicação potencial no controle de Leishmania amazonensispor
dc.title.alternativeApplied molecular modeling to the enzymatic inhibition reactions study with Leishmania amazonensis control’s potential applicationeng
dc.typeTesepor
Appears in Collections:Doutorado em Química

Files in This Item:
File Description SizeFormat 
2010 - Catarina de Nigris Del Cistia.pdf2010 - Catarina de Nigris Del Cistia6.64 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.