???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/1166
Full metadata record
DC FieldValueLanguage
dc.creatorEstrada Bonilla, German Andres-
dc.creator.Latteshttp://lattes.cnpq.br/4285048067075293por
dc.contributor.advisor1Baldani, José Ivo-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8391182235603982por
dc.contributor.advisor-co1Baldani, Vera Lucia Divan-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/7445996639798624por
dc.date.accessioned2016-08-17T14:23:26Z-
dc.date.issued2011-06-09-
dc.identifier.citationESTRADA BONILLA, German Andres. Seleção de bactérias diazotróficas solubilizadoras de fósforo e seu efeito no desenvolvimento de plantas de arroz. 2011. 70 f. Dissertação (Mestrado em Fitotecnia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/1166-
dc.description.resumoO arroz (Oryza sativa L.) é uma das principais culturas cultivadas, sendo amplamente consumida nos cinco continentes. Nos últimos anos as pesquisas têm aumentado em relação ao uso de bactérias diazotróficas e promotoras de crescimento vegetal (BPCV), como uma possível solução para diminuir o uso de fertilizantes químicos nitrogenados e fosfatados. Desta forma, este trabalho teve por objetivo avaliar o potencial fisiológico e a capacidade de solubilização de fosfato inorgânico (PI) de diferentes estirpes de bactérias diazotróficas oriundas de plantas de arroz cultivadas em diferentes regiões do Brasil e seu papel no desenvolvimento de plantas de arroz. Primeiramente foi padronizado o meio de cultura a ser empregado nos ensaios de solubilização de fosfato inorgânico em placas de petri. Neste estudo foram testadas 49 estirpes em quanto sua capacidade de solubilizar fosfato tricálcico (PTC) nos meios sólidos NBRIP e GL. Em seguida foi quantificado o P solúvel, pH, a população de bactérias e índice de solubilização (IS) das 7 estirpes solubilizadoras de PI em meio líquido NBRIP. As estirpes solubilizadoras de PI também foram testadas quanto à produção de compostos indólicos (AIA) e capacidade de fixar nitrogênio através da atividade de redução e acetileno (ARA). As estirpes foram identificadas através da amplificação e do sequenciamento parcial dos genes 16S RNAr e gene nifH. Três destas estirpes foram testadas em condições de casa de vegetação junto com os controles Herbaspirillum seropedicae BR11417 (ZAE94), Gluconacetobacter diazotophicus BR11281 (PAL5) e Azotobacter Chroochoccum AC1 quanto à capacidade de aumentar o desenvolvimento e produção de plantas de arroz. Todas as estirpes que solubilizaram PI no meio de cultura NBRIP líquido influenciaram na diminuição do pH do meio enquanto que a população se manteve em torno de 108 ufc.ml-1 por até 15 dias. Todas as estirpes apresentaram capacidade de produzir compostos indólicos e foram capazes de reduzir acetileno. A análise parcial do gene 16S RNAr e do gene nifH das sete estirpes possibilitou a identificação das espécies Herbaspirillum seropedicae, Burkholderia vietnamiensis e B. kururiensis. Todas as estirpes promoveram um aumento na produção de massa seca nos grãos entre 33 e 47% quando foi utilizado o PTC e de 18 a 44% quando foi utilizado o fosfato super simples (PSS). Em geral, todas as estirpes estimularam um maior acumulo de N e P total no grão e um maior índice de colheita. O uso dessas estirpes como bioinoculante é bastante promissor e portanto torna-se necessário testá-las em condições de campo.por
dc.description.abstractRice (Oryza sativa L.) is one of the major world crops, being widely consumed among people from five continents. In recent years research have increased in relation to the use of plant growth promoting diazotrophic bacteria (PGPB) as a possible solution to reduce the use of chemical nitrogen and phosphate fertilizers. Thus, this study aimed to evaluate the physiological potential and inorganic phosphate (IP) solubilization capacity of different diazotrophic strains isolated from rice plants grown in different regions of Brazil as well as to evaluate their role in the development of rice plants. Firstly, the culture media employed to test the phosphate solubilization in petri dishes were standardized. In this study 49 strains were tested for their capability of solibilizing tricalcium phosphate in NBRIP and GL solid media. Afterwards, the soluble P, pH, population and the index of solubilization (IS) were quantified for 7 IP solubilizing strains grown in the NBRIP liquid medium. The IP solubilizing isolates were also tested for the production of indolic compounds (IAA) and the nitrogen fixation capacity through the acetylene reduction activity (ARA). The isolates were taxonomical identified through the amplification and partial sequencing of 16S RNAr and nifH genes. Three of these strains and the controls H. seropedicae ZAE94, G diazotrophicus PAL5 and A.chroochoccum AC1 were tested in greenhouse conditions in association with rice plants. All strains that solubilized IP in NBRIP liquid medium decreased the medium pH while the bacterial population remained around 108 cfu ml-1 for up to 15 days. All strains were capable to produce indole compounds and reduced acetylene. The partial analysis of 16S RNAr and nifH gene indicated the identification of the species Herbaspirillum seropedicae, Burkholderia vietnamiensis and B. kururiensis species. All strains showed an increase in the range of 33 and 47% in grain yield when tricalcium phosphate (PTC) was applied and between 18 and 44% when PSS (simple superphosphate) was used. In general, all of the strains stimulated an increase of total P in the grain and a greater harvest index. The use of these strains as bioinculant is promising and therefore it is necessary to test in the field conditionspor
dc.description.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2016-08-17T14:23:26Z No. of bitstreams: 1 2011- German Andres Estrada Bonilla.pdf: 1652819 bytes, checksum: 24a4d4664a65dfad88ccdfe17b4a0c02 (MD5)eng
dc.description.provenanceMade available in DSpace on 2016-08-17T14:23:26Z (GMT). No. of bitstreams: 1 2011- German Andres Estrada Bonilla.pdf: 1652819 bytes, checksum: 24a4d4664a65dfad88ccdfe17b4a0c02 (MD5) Previous issue date: 2011-06-09eng
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4459/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19053/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25387/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/31800/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38205/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/44593/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/50982/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57440/2011-%20German%20Andres%20Estrada%20Bonilla.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Fitotecniapor
dc.relation.referencesALIKHANI, H.A.; SALEH-RASTIN, N.; ANTOUN, H. Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, v. 287, p.35–41, 2006. ALVES, J. R.; BODDEY, R. M.; URQUIAGA S. The success of BNF in soybean in Brazil. Plant and soil, v. 252, p. 1-9, 2003. ANTOUN, H. A.; BEAUCHAMP, C. J.; GOUSSARD, N.; CHABOT, R.; LALANDE, R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant and Soil, v.204, p.57–67, 1998. ARAÚJO, W. L.; MARCON, J.; MACCHERONI JUNIOR, W.; VAN ELSAS, J. D.; VAN VUURDE, J. W. L.; AZEVEDO, J. L. Diversity of endophytic bacterial populations and their interaction with Xilella fastidiosa in citrus plants. Applied and Environmental of Microbiology, v.68, p.4906-4914, 2002. ARAÚJO, A. S. Caracterização e uso de bacterias diazotróficas isoladas de diferentes cultivares de arroz originárias do estado do maranhão. Seropedica, Universidade Federal Rural do Rio de Janeiro, 2008. 88p. Tese (Doutorado em Fitotecnia, Agroecologia). Instituto de Agronomia, Departamento de Fitotecnia. Tese de doutorado. ASGHAR, H.N.; ZAHIR, Z.A.; ARSHAD, M.; KHALIQ, A. Relationship between in vitro production of auxins by rhizobacteria and their growth-promoting activities in Brassica juncea L. Biology and Fertility of Soils, v.35, p.231-237, 2002. AZAMBUJA, I.H.V., VERNETTI Jr., F.J., MAGALHÃES Jr., A. M. Arroz irrigado no sul do Brasil. Aspectos socioeconômicos da produção do arroz. Embrapa Informação Tecnológica, p.23-44, 2004. BACA, B.; SOTO, L.; PARDO, M. Fijación biológica de nitrógeno. Elementos, v.1, p. 39–49, 2000. BACILO-JIMENEZ, M.; AGUILAR-FLORES, S.; VENTURA-ZAPATA, E.; PEREZ- CAMPOS, E.; BOUQUELET, S.; ZENTENO, E. Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant and Soil, v.249, p.271–277, 2003. BALANDREAU, J. Microbiology of the association. Canadian Journal of Microbiology, v.29, p.851–859, 1983. BALDANI, J.I.; BALDANI, V.L.D.; SELDIN, L.; DÖBEREINER, J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. International Journal of Systematic Bacteriology, v.36, p.86–93, 1986. BALDANI, V. L. D. Efeito da Inoculação de Herbaspirillum spp.. no processo de colonização e infecção de plantas de arroz, e ocorrência e caracterização parcial de 49 uma nova bactéria diazotrófica. 1996. 238 p. Tese (Doutorado em Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. BALDANI, V.L.D.; BALDANI, J.I.; DÖBEREINER, J. Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia spp. Biology and Fertility of Soils, v.30, p.485-491, 2000. BARTEL, B. Auxin biosynthesis. Annual Review in Plant Physiology and PLANT Molecular Biology, v.48, p.51–66, 1997. BASHAN, Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnology Advances, v.16, p.729–77, 1998. BASHAN, Y.; HOLGUIN, G.; DE-BASHAN, L.E. Azospirillum-plant relationships: agricultural, physiological, molecular and environmental advances (1997–2003). Canadian Journal Microbiology, v.50, p.521–5, 2004. BASTIAN, F.; COHEN, A.; PICCOLI, P.; LUNA, V.; BARALDI, R; BOTTINI, R. Production of indole-3-acetic acid and giberellins A(1) and A(3) by Gluconacetobacter diazotrophicus and Herbaspirillum seropedicae in chemically-defined culture media. Plant Growth Regulation, v. 24, n.1, p.7-11, 1998. BELIMOV, A.A.; DODD, I.C.; HONTZEAS, N.; THEOBALD ,J.C.; SAFRONOVA, V.I.; DAVIES, W.J. Rhizosphere bacteria containing ACC deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytologist, v.181, p.413–423, 2009. BIELESKI, R.L. Phosphate pools, phosphate transport and phosphate availability. Annual Review of Plant Physiology, v.24, p.225–252, 1973. BLOEMBERG, G. V.; LUGTENBERG, B. J. J. Molecular basis of plant growth promotion and biocontrole by rhizobacteria. Current Opinion in Plant Biology, v.4, p.343-350, 2001. BODDEY, R. M.; OLIVEIRA, O. C. D.; URQUIAGA, S.; REIS, V. M.; OLIVARES, F. L.; D., BALDANI, V. L. D.; DÖBEREINER, J. Biological nitrogen fixation associated with sugarcane and rice: contributions and prospects for improvement. Plant and Soil, v.174, p.195–209, 1995. BONILLA, R.; NOVO, R.; VENEGAS, N.; GALVIS, A.M.; MARTÍNEZ, M.M.; PARRA, D.; VANEGAS, O. Generación de Tecnologías para la utilización de la fijación no simbiótica de nitrógeno como alternativa de la fertilización. Programa Regional de Investigación Agrícola CORPOICA-Regional v.3, p.12-30, 2000. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, v.72, p.248-254, 1976. BRADY,N.; WEIL, R. 2004. Elements of the nature and properties of soils. Segunda edição. Editorial Prentice Hall. 606 p. 50 BRANDL, M.T.; LINDOW, S. E. Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Applied and Environmental Microbiology, v.62, p.4121-4128, 1996. BRASIL, M. Ocorrência e Diversidade Genética de Bactérias Diazotróficas Endofíticas em Variedades de Arroz RJ. 2005. 105 p. Tese (Doutorado em Fitotecnia) Universidade Federal Rural de Rio de Janeiro, Seropédica, RJ. BROWN, M. E.; BURLINGHAM, S. W. Production of plant growth substances by Azotobacter chroococcum. Journal of General Microbiology, v.53, p.135-144, 1968. CABALLERO, T.; CAMELO, M.; BONILLA, R.; MARTÍNEZ, M. Determinación de Actividad Fosfatosolubilizadora por bacterias aisladas a partir de suelos algodoneros en los Departamentos del Cesar y Meta. Suelos Ecuatoriales, 37(1): 94-100, 2007. CHEN, Y.; REKHA, P.; ARUN, A.; SHEN, F.; LAI, W.; YOUNG C. Phosphate solubilizing bacteria from subtropical soil and their tricalcicum phosphate solubilizing abilities. Applied Soil ecology, v.34, p33-41, 2006. CHO, J. C.; VERGIN, K. L.; MORRIS, R. M.; GIOVANNONI, S. J. Lentisphaera araneosa gen. nov., sp. nov., a transparent exopolymer producing marine bacterium, and the description of a novel bacterial phylum, Lentisphaerae. Environmental Microbiology, v.6, p.611–621, 2004. CHOULDHURY, A. T. M. A.; KENNEDY, I. R. Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biology and Fertility of Soils, v.39, n 4, p.219–227, 2004. CLARK, E.; MANULIS, S.; OPHIR, Y.; BARASH, I.; GAFNI, Y. Cloning and characterization of iaaM and iaaH from Erwinia herbicola pathovar gypsophilae. Phytopathology, v.83, p.234–240, 1993. COCKING, E.C. Concerted action for cereal and other non-legume crop nitrogen fixation, enhanced growth and yield. in: KENNEDY, I.R.; CHOUDHURY, A.T.M.A. (Eds.). Biofertilizers in Action, Rural Industries Research and Development Corporation, Canberra, p. 1–3, 2002. COMPANHIA NACIONAL DE ABASTECIMENTO (CONAB). Acompanhamento de safra brasileira: grãos, quinto levantamento, fevereiro 2011. Disponível em http://www.conab.gov.br/conabweb/download/safra/4graos_07.01.10.pdf. Acesso em: 15 de fevereiro de 2011. CONG, P.T.; DUNGA, T.D.; HIEN, T.M.; HIEN, N.T.; CHOUDHURY, A.T.M.A.; KECSKÉS, M.L.; KENNEDY, I.R. Inoculant plant growthpromoting microorganisms enhance utilization of urea-N and grain yield of paddy rice in southern Vietnam. European ournal of soil biology, v.45, p.52–61, 2009. 51 COSTACURTA, A.; KEIJERS, V.; VANDERLEYDEN, J. Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Molecular and General Genetics, v.243, p.463–472, 1994 COSTACURTA, A.; VANDERLEYDEN, J. Synthesis of phytohormones by plant-associated bacteria. Critical Reviews in Microbiology, v.21, p.1-18, 1995. CRESPO, J. M.; BOIARDI, J. L.; LUNA, M. F. Mineral phosphate solubilization activity of Gluconacetobacter diazotrophicus under P-limitation and plant root environment. Agricultural Sciences, v.2, p.16-22, 2011. DARDANELLI, M.S.; CARLETTI, S.M.; PAULUCCI, N.S.; MEDEOT, D.B.; CÁCERES, E.A.R.; VITA, F.A.; BUENO, M.; FUMERO, M.V.; GARCIA, M.B. Benefits of plant growth-promoting rhizobacteria and rhizobia in agriculture. In: MAHESHWARI, D.K. (Ed.). Plant Growth and Health Promoting Bacteria. Springer-Verlag, Berlin Heidelberg, p.1-20, 2010. DE SALAMONE, I.; HYNES, R.; NELSON, L. Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of Microbiology, v.47, p.404-411, 2001. DENNIS, N. Reinventing rice to feed the world. SCIENCE, v.321, p.330-333, 2008. DEUBEL, A.; MERBACH, W. Influence of microorganisms on phosphorus bioavailability in soils. in: BUSCOT, F. VARMA, A. (Eds.). Microorganisms in soils: roles in genesis and functions. Springer, Berlin, p. 177–191, 2005. DI, H.J.; CAMERON, K.C. Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies. Nutrient Cycling in Agroecosystems, v.64 ,n.3, p.237–256, 2002. DIDONET, A. D.; MARTIN-DIDONET, C. C. G.; GOMES, G. F. Avaliação de linhagens de arroz de terras altas inoculadas com Azospirillum lipoferum Sp59b e Azospirillum brasilense Sp24. Comunicado Técnico EMBRAPA, n. 69, dez. 2003. DIMKPA, C.; WEINAND, T.; ASCH, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell e Environment, v. 32, n.12, p.1682-1694, 2009. DÖBEREINER, J.; BALDANI, V.L.D.; BALDANI, J.I. Como isolar e identificar bactérias diazotróficas de plantas não leguminosas. Brasília: Embrapa- SPI, Itaguaí, RJ. Embrapa Agrobiologia, 60p, 1995. DOBBELAERE, S.; CROONENBORGHS, A.; THYS, A.; PTACEK, D.; VANDERLEYDEN, J.; DUTTO, P.; LABANDERA-GONZALEZ, C.; CABALLERO-MELLADO, J.; ANGUIRRE, J.F.; KAPULNIK, Y.; BRENER, S.; BURDMAN, S.; KADOURI, D.; SARIG, S.; OKON, Y. Response of agronomically important crops to inoculation with Azospirillum. Australian Journal Plant Physiology, v.28, p.871–879, 2001. 52 DOBBELAERE S, V.; ANDELEYDEN, J.; OKON,Y. Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, Boca Raton, v.22: p.107-149, 2003. DODD, I.C. Root-to-shoot signalling: assessing the roles of „„up‟‟ in the up and down world of long-distance signalling in planta. Plant and Soil, v.274, p.251–270, 2005. DODD, I.C.; ZINOVKINA, N.Y.; SAFRONOVA, V.I.; BELIMOV, A.A. Rhizobacterial mediation of plant hormone status. Annals of Applied Biology, v. 157, n.3, p.361-379, 2010. EWING, B.; HILLIER, L.; WENDL, M.C.; GREEN, P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, v.8, p;175-185,1998. EWING, B. GREEN, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Research, v. 8, p.186-194, 1998. EGEBO, L.A.; NIELSEN, S.V.S.; JOCHIMSEN, B.U. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum. Journal of Bacteriology, v.173, p. 4897–4901, 1991. ELIASSON, L.; BERTEL, G.; BOLANDER, E. Inhibitory action of auxin on root elongation not mediated by ethylene. Plant Physiology, v.91, p.310–314, 1989. ESTRADA, G. A.; BONILLA, R. R.; DIVAN BALDANI, V. L. Efecto de diferentes temperaturas de almacenamiento sobre la calidad de bioinoculantes turbosos. Revista Corpoica - Ciencia y Tecnologia Agropecuarias, v.10, n.2, p. 205-213, 2009. EUCLYDES, R. F. Manual de utilização do programa SAEG (Sistema de Análise Estatística e Genética). Viçosa, MG: Universidade Federal de Viçosa, 1983. 59p. EUROPEAN FERTILIZER MANUFACTURER ASSOCIATION (EFMA). Phosphorus Essential Element for Food Production. Disponível em: http://www.efma.org/documents/file/publications/Understanding%20Phosphorus%20and%20its%20Use%20in%20Agriculture%20(2000).pdf. Acesso em 10 de janeiro de 2011. FAO. FAOSTAT Database. Disponível em: http://faostat.fao.org/site/339/default.aspx Acesso em: 15 de janeiro de 2011. FENGLEROWA, W. Simple method for counting Azotobacter in soil samples. Acta. Microbiologica Polonica, v.14, n.21, p.203, 1965. FELSENSTEIN, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution v.39, p.783-791, 1985. FERREIRA, D. F. Análises estatísticas por meio do Sisvar para Windows versão 5.0. In: 45a Reunião Anual da Região Brasileira da Sociedade internacional de Biometria. UFSCar, São Carlos, SP, 2003. p.255-258. 53 FERREIRA, J.S.; SABINO, D.C.C.; GUIMARÃES, S.L.; BALDANI, J.I.; BALDANI, V.L.D. Seleção de veículos para o preparo de inoculante com bactérias diazotróficas para arroz inundado. Revista Agronomia, v.37, n.02, p.6-12, 2003. FERREIRA, J.S. Seleção e avaliação de veículos para inoculação de bactérias diazotróficas na cultura do arroz inundado. 2004. 44p. Dissertação (Mestrado em Agronomia – Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. FERREIRA, J.S. Qualidade de inoculante, inoculação e reinoculação de Herbaspirillum seropedicae em duas variedades de arroz irrigado. 2008. 83p. Tese (Doutorado em Agronomia – Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. FERREIRA, J.S.; BALDANI, J.I.; BALDANI, V.L.D. Seleção de inoculantes à base de turfa contendo bactérias diazotróficas em duas variedades de arroz. Acta Scientiarum. Agronomy, v.32, n.1, p.179-185, 2010. FRANCHE, C.; LINDSTRÖM, K.; ELMERICH, C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil. v.321, p.35–59, 2009. GANS, J.; WOLINSKY, M.; DUNBAR, J. Computation improvements reveal great bacterial diversity and high metal toxicity in soil. Science, v.309, p.1387–139, 2005. GILLER, K. (2001): Nitrogen fixation in tropical cropping systems. CABI Publishing, Wallingford, UK, 423p. GILLIS, M.; TRAN VAN, V.; BARDIN, R.; GOOR, M.; HEBBAR, P.; WILLEMS, A.; SEGERS,P.; KERSTERS, K.; HEULIN, T.; FERNANDEZ, M.P. Poly phasic taxonomy in the genus Burkholderia leading to a amended description of the genus and proposition o Burkholderia vietmaniensis sp. nov. for N2-fixing isolates from rice in Vietnam. International Journal of Systematic Bacteriology, v.45, p.274–289, 1995. GLICK, B.R.; CHENG, Z.; CZARNY, J.; DUAN, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, v.119, p.329–339, 2007. GLICKMANN, E.; GARDAN, L.; JACQUET, S.; HUSSAIN, S.; ELASRI, M.; PETIT, A.; DESSAUX, Y. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Molecular Plant–Microbe Interaction, v.11, p.156–162, 1998. GOLDSTEIN, A. H. Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. American Journal of Alternative Agriculture, v.1, p.51–57, 1986. GOLDSTEIN, A.H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biology, Agriculture and Horticulture, v.12, p.185–193, 1995. GORDON, S.A.; WEBER,P.R. Colorimetric estimation of indol acetic acid. Plant Physiology, v.26: p.192-195, 1950. 54 GORDON, D.; ABAJIAN, C.; GREEN, P. Consed: A Graphical Tool for Sequence Finishing. Genome Research, v.8, p.195-202, 1998. GOVINDARAJAN, M.; BALANDREAU, J.; KWON, S.; WEON, H.; LAKSHMINARASIMHAN, C. Effects of the Inoculation of Burkholderia vietnamiensis and Related Endophytic Diazotrophic Bacteria on Grain Yield of Rice. Microbial Ecology, v.55, p.21–37, 2008. GRAY, E.; SMITH, D.L. Intracellular and extracellular PGPR: Commonalities and distinctions, in the plant bacterium signaling process. Soil biology and soil biochemistry, v.37, p.395–412, 2005. GUIMARÃES, C.M.;DOS SANTOS, A.B.; JÚNIOR, A.M.M.; STONE, L.F. Sistemas de cultivo. In: SANTOS, A.B.; STONE, L.F.; VIEIRA, N.R.R. (Eds.). A cultura do arroz no Brasil. Santo Antônio de Goiás: Embrapa-CNPAF, p.53-96, 1998. GUIMARÃES, S. L. seleção de estirpes de bactérias diazotróficas endofíticas para inoculação em três cultivares de arroz inundado. 2001. 52p. Dissertação (mestrado em Agronomia – Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. GUIMARÃES, S.L., BALDANI, J.I., BALDANI, V.L.D. Efeito da inoculação de bactérias diazotróficas endofíticas em arroz de sequeiro. Revista Agronomia, v37, n.2, p.25-30, 2003. GUIMARÃES, S. L. Aplicação de inoculante turfoso com bactérias diazotróficas e molibdênio em cultivares de arroz adubadas com nitrogênio mineral. 2006. 52p Tese (Doutorado em Agronomia - Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. GUIMARÃES, S. L.; BALDANI, J. I.; BALDANI, V. L. D.; JACOB-NETO, J. Adição de molibdênio ao inoculante turfoso com bactérias diazotróficas usado em duas cultivares de arroz irrigado. Pesquisa Agropecuária Brasileira, v. 42, n. 3, p. 393-398, 2007. GUIMARÃES, A. P. Bases bioquímicas do fracionamento isotópico de 15n na fixação biológica de nitrogênio e da eficiência energética do processo em diferentes estirpes de bactérias diazotróficas. 79p. Tese ( Doutorado em Produção Vegetal). Universidade Estadual do Norte Fluminense, Campus, RJ, 2010. GYANESHWAR, P.; PAREKH, L. J.; ARCHANA, G.; PODLE, P. S.; COLLINS, M. D.; HUTSON R. A.; NARESH. K. G. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiology Letter, v.171, p.223-229, 1999. GYANESHWAR, P.; KUMAR, G. N.; PAREKH, L. J.; POOLE, P. S. Role of soil microorganisms in improving P nutrition of plants. Plant and Soil, v.245, p.83-93, 2002. HALDER, A.; CHAKRABARTTY, P. Solubilization of inorganic phosphates by Rhizobium. Folia Microbiologica, v.38, p.325-330, 1993. 55 HAMEEDA, B.; HARINI, G.; RUPELA, O.P.; WANI, S.P.; REDDY, G. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiological Research, v.163, p.234–24, 2008. HARTMANN, A.; SINGH, M.; KLINGMULLER ,W. Isolation and characterization of Azospirillum mutants excreting high amounts of indoleacetic acid. Canadian journal microbiology .v.29, p.916–923, 1983. HUANG, X.; MADAN, A. CAP3: A DNA sequence assembly program. Genome Research, v.9, p.868-877, 1999. HUNGRIA, M.; LOUREIRO, M.F.; MENDES, I.C.; CAMPO, R.J.; GRAHAM P.H. Inoculant preparation, production and application, In: WERNER, D.; NEWTON W.E. (Eds.). Nitrogen Fixation in Agriculture, Forestry, Ecology and the Environment, Springer, Dordrecht, The Netherlands, p. 223–254, 2005, IGUAL JM, RODRIGUEZ-BARRUECO C. Fertilizers, food and environment. In: VELAZQUEZ, E.; RODRIGUEZBARRUECO, C. (Eds.). First International Meeting on Microbial Phosphate Solubilization. Dordrecht: Developments in Plant and Soil Science, v.102, p.199–202, 2007. INTORNE, A.C.; DE OLIVEIRA, M.V.; LIMA, M.L.; DA SILVA, J.F.; OLIVARES, F.L.; DE SOUZA FILHO, G.A. Identifcation and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Archives of Microbiology, v.191, p.477-483, 2009. Instituto Brasileiro de Geografia e Estatística (IBGE). Levantamento Sistemático da Produção Agrícola. Disponível em http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa/lspa_200912comentarios.pdf. Acesso em: 20 de janeiro de 2010. JAIN, D.K.; PATRIQUIN, D.G. Characterization of a substance produced by Azospirillum which causes branching on wheat root hairs. Canadian Journal of Microbiology, v. 31, p. 206-210, 1985. JAKOBSEN, I.; LEGGETT, M.E.; RICHARDSON, A.E. Rhizosphere microorganisms and plant phosphorus uptake. In: SIMS, J.T.; SHARPLEY, A.N. (Eds.). Phosphorus, Agriculture and the Environment. American Society for Agronomy, Madison, p.437–494, 2005. JONES, R. D. Phosphorus cycle. In: LEDERBERG, J (ed.). Encyclopedia of Microbiology, Academic, San Diego, v.3, 2. edn. . p. 614–617, 2000. KENNEDY, G.; BURLINGAME, B. Analisys of food composition data of rice from a plant genetic resource perspective. Food Chemistry, v.80, n.4, p.589-596, 2003. KHALID, A.; ARSHAD, M. e ZAHIR, Z. A. Growth and yield response of wheat to inoculation with auxin producing PGPR. Pakistan Journal of Botany, v.35, p.483-498, 2004. 56 KHALIQ, A.; ARSHAD, M.; ZAHIR, Z.A. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, v. 96, p. 473 – 480, 2004. KIMURA, M. A. simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, v.16, p.111-120, 1980. KOBAYASHI, M.; IZUI, H.; NAGASAWA, T.; YAMADA H. Nitrilase in biosynthesis of the plant hormone indole-3-acetic acid from indole-3-acetonitrile – cloning of the Alcaligenes gene and sitedirected mutagenesis of cysteine residues. Proceedings of the National Academy of Sciences of the United States of America, v.90, p.247–251, 1993. KOBAYASHI, M.; SUZUKI, T.; FUJITA, T.; MASUDA, M.; SHIMIZU, S. Occurrence of enzymes involved in biosynthesis of indole-3-acetic acid from indole-3-acetonitrile in plant-associated bacteria, Agrobacterium and Rhizobium. Proceedings of the National Academy of Sciences of the United States of America. v.92, p.714–718 1995. KOGA, J.; ADACHI T.; HIDAKA H. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Molecular Genetics and Genomics, v.226, p.10–16, 1991. KPOMBLEKOU, K.; TABATABAI, M. Effects of organic acids on release of phosphorous from rock phosphate. Soil Sciences, v.158, p.442–453, 1994. KUCEY, R. M. N.; JANZEN H. H.; LEGGETT M. E. Microbially mediated increases in plant-available phosphorus. Advances in Agronomy, v.42, p.199-227, 1989. KUMAR, V.; NARULA, N. Solubilization of inorganic phosphates and growth emergent of wheat as affected by Azotobacter chrococum mutants. Biology and Fertility of Soils, v.28, p.301-305, 1999. KUMAR, V.; BEHL, R.K.; NARULA, N. Establishment of phosphate solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse conditions, Microbiological Research, v.156, p.87–93, 2001. KUNDU, B.; GAUR, A. Establishment of nitrogen fixing and phosphate solubilizing bacteria in rhizosphere and their effect on yield and nutrient uptake of wheat crop. Plant and Soil, v.57, p.223-230, 1980. KUNDU, D.K., LADHA, J.K. Engancing soil nitrogen use and biological nitrogen fixation em wetland rice. Experimental Agriculture, v. 31, n.3, p.261-278, 1995. LADHA, J.; REDDY, P. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and Soil, v.252, p.151–167, 2003. LAKSHMINARAYANA, K.; NARULA, N.; HOODA, I. S.; FARODA, A. S. Nitrogen economy in wheat (Triticum aestivum L.) through use of Azotobacter chroococcum. Indian Journal of Agricultural Science, v.62, p.75–76, 1992. 57 LAMBRECHT, M.; OKON, Y.; VANDE BROEK, A.; VANDERELEYDEN, J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology, v.8, p.298-300, 2000. LATA, H.; LI, X.C.; SILVA, B. Identification of IAA producing endophytic bacteria from micropropagated echinacea plants using 16S rRNA sequencing. Plant Cell Tissue Organ Cult, v.85, p.353–359, 2006. LEAUNGVUTIVIROJ, C.; RUANGPHISARN, P.; HANSANIMITKUL, P.; SHINKAWA, H.; SASAKI, K. Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Bioscience, Biotechnology, and Biochemistry. v.74, n.5, p.1098-1101, 2010. LEIGH,G J. Dinitrogen chemistry. In: LEIGH, G.L., (ed.). Nitrogen Fixation at the Millenium. Elsevier, Amsterdam, the Netherlands, p.299-327, 2002. LEVEAU, J.H.J.; LINDOW, S.E. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Applied and Environmental Microbiology, v.71, p.2365–2371, 2005. LEVEAU, J.H.J.; GERARDS, S. Discovery of a bacterial gene cluster for catabolism of the plant hormone indole 3-acetic acid. FEMS Microbiology Ecology, v.65, p.238–250, 2008. LIN, T. F.; HUANG, H. I.; SHEN, F. T.; YOUNG, C. C. The protons of gluconic acid are the major factor responsible for the dissolution of tricalcium phosphate by Burkholderia cepacia CC-Al74. Bioresource Technology, v.97, p.957–960, 2006. LODEWYCKX, C. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, v.21, p.583-606, 2002. LOPEZ, M.; ESTRADA, G. A.; CAMELO, M.; BALDANI, V.L.; BONILLA, R.R.B. Determination of physiological potential in phosphate solubilizing and mineralizing by nitrogen fixing bacteria. In: 12th International symposium on biological nitrogen fixation with non-legumes, Búzios, 2010. LUCY, M.; REED, E.; GLICK, B. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek, v.86, n.1, p.1-25, 2004 LUGTENBERG, B.; KAMILOVA, F. Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, v.63, p.541-556, 2009. MAGALHÃES, F.M.; BALDANI, J.I.; SOUTO, S.M.; KUYKENDALL, J.R.; DÖBEREINER, J. A new acid-tolerant Azospirillum species. Academia Brasileira de Ciências, v.55, p.417–430, 1983. MAGALHÃES, C. L.; DE SOUZA, E. M.; WEBER, O. B.; BALDANI, J.I.; DÖBEREINER, J.; PEDROSA F.O. 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Applied and Environmental Microbiology, v.67, p.2375-2379, 2001. 58 MAHESHKUMAR, K.S.; KRISHNARAJ, P.U; ALAGWADI, A.R. Mineral solubilising activity of Acetobacter diazotrophicus, a bacterium associated with sugarcane. Current Science, v.76, p.874-875, 1999. MANULIS, S.; HAVIV-CHESNER, A.; BRANDL, M.T.; LINDOW, S.E.; BARASH, I. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Molecular Plant–Microbe Interaction, v. 11, p. 634–642, 1998. MARSCHNER, H. Root-induced changes in the availability of mi c ronut r ient s in the rhi zosphere. In: WAISEL, Y.; ESHEL, A. e KAFKAFI, V. (Eds.). Plants roots: The hidden half. New York, Marcel Dekkerp, p.503-528, 1991. MARTIN, H.V.; ELLIOTT, M.C.; Ontogenetic Changes in the Transport of Indol-3yl-acetic Acid into Maize Roots from the Shoot and Caryopsis. Plant Physiology, v.74, n.4, p.971-974, 1984. McCULLY, M. Niches for bacterial endophytes in crop plants: a plant biologist‟s view. Aust. Journal of Plant Physiology. v.28, p.983–990, 2001. MENNA, P.; HUNGRIA, M.; BARCELLOS, FG.; BANGEL, E.V.; HESS, PN.; MARTINEZ-ROMERO, E. Molecular phylogeny based on the 16S rRNA gene of elite rhizobial strains used in Brazilian commercial inoculants. SYSTEMATIC AND APPLIED MICROBIOLOGY, v.29, p.315–33, 2006. MOREIRA, F.M.S., SIQUEIRA, J.O. Microbiologia e bioquímica do solo. 2a ed. UFLA, Lavras, Brasil. 2006, 729 p. MORRIS, R. O. Genes specifying auxin and cytokinin biosynthesis in prokaryotes. In Davies, P.J. (ed.), Plant Hormones: Physiology, Biochemistry and Molecular Biology, Kluwer Academic Publishers, p.318–339, 1995. MUTHUKUMARASAMY, R.; CLEENWERCK, I.; REVATHI, G.; VADIVELU, M.; JANSSENS, D.; HOSTE, B.; GUM, K.U.; PARK, K.D.; SON, C.Y.; SA, T.M.; CABALLERO-MELLADO, J. Natural association of Gluconacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Systematic and Applied Microbiology, v.28, p.277–286, 2005. NAGASAWA, T.; MAUGER, J. e YAMADA, H. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Purification and characterization. European Journal of Biochemistry, v.194, p.765–772, 1990. NARULA, N.; LAKSHMINARAYANA, K; TAURO, P. Ammonia excretion by Azotobacter chroococcum. Biotechnolog Science. v. 23, p. 467–470, 1980. NAUTIYAL, C. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, v.170, p.265-270, 1999. 59 NOVAIS, R. F.; SMYTH, J. T.; NUNES, F. N. Fósforo. In: NOVAIS, R. F, VENEGAS, V. H. A.; BARROS, N.F.; FONTES, R.L.F; CANTARUTTI, R.B JÚLIO.; NEVES, C.L. (Eds.). Fertilidade do Solo. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, p. 471-550, 2007. OLIVEIRA, E. Quantificação da fixação biológica de nitrogênio em arroz (Oryza sativa L.) inundado. 1994. 135p. Dissertação (Mestrado) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. OSBORNE, C. A.; GALIC, M.; SANGWAN, P.; JANSSEN, P. H. PCRgenerated artefact from 16S rRNA gene-specific primers. FEMS Microbiology Letters, v.248, p.183–187, 2005. PARK, K.H.; LEE, O.M.; JUNG, H.I.; JEONG, J.H.; JEON, Y.D.; HWANG, D.Y.; LEE, C.Y.; SON, H.J. Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Applied Microbiology and Biotechnology, v.86, p.947–95, 2010. PATTEN, C.L; GLICK, B.R. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS. Canadian journal microbiology, v,48, p.635-642, 2002a. PATTEN, C.L.; GLICK, B.R. The role of bacterial indoleacetic acid in the development of the host plant root system. Applied and Environmental Microbiology, v.68, p.3795-3801, 2002b. PATTEN, C. L.; GLICK, B. R. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, v.68, p.3795-3801, 2002c. PEDRAZA, R.O.; BELLONE, C.H.; DE BELLONE, S.; BOA SORTE, P.M.B.; TEIXEIRA, K.R.D. Azospirillum inoculation and nitrogen fertilization effect on grain yield and on the diversity of endophytic bacteria in the phyllosphere of rice rainfed crop. European Journal of Soil Biology, v.45, p.36-43, 2009. PERIN, L. Estudo da Comunidade de Bactérias Diazotróficas do Gênero Burkholderia em Associação com Cana-de-açúcar e Descrição de Burkholderia silvatlantica. 2007. 120 p. Tese (Doutorado em Agronomia - Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. PERLEY, J.W.; STOWE, B.B. On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiology, v.41, p.234–237, 1966. PII, Y.; CRIMI, M.; CREMONESE, G.; SPENA, A.; PANDOLfiNI, T. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biology, v.7, p.1–11, 2007. POLY, F.; MONROZIER, L. J.; BALLY, R. Improvement in the rflp procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Research in Microbiology, v.152, p.95-103, 2001. 60 PUNSCHKE, K.; CARLOMAGNO, M.; LABANDERA, C. Potencial agronómico de bacterias fijadoras de nitrógeno endófitas de arroz. In: V Simposio de Recursos Geneticos para América Latina e el Caribe: Actas Uruguay, 2005. RADWAN, T.E.E.; MOHAMED, Z.K.; REIS, V.M. Efeito da inoculação de Azospirillum e Herbaspirillum na produção de compostos indólicos em plântulas de trigo e arroz. Pesquisa Agropecuaria Brasileira, v.39, p.987–99, 2004. RAJKUMAR, M.; LEE, K.J.; LEE, W.H.; BANU, J.R. Growth of Brassica juncea under chromium stress: Influence of siderophores and indole 3 acetic acid producing rhizosphere bacteria. Journal of Environmental Biology, v.26, n.4, p.693–699, 2005. RAMAMOORTHY, V.; VIWANATHAN, R.; RAGUCHANDER, T.; PRAKASAM, V.; SAMIYAPPAN, R. Induction of systems resistance by plant growth promotion rhizobacteria in crop plants against pests and diseases. Crop Protection, v.20, p.1-11, 2001. RICHARDSON, A.E. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Australian Journal Plant Physiology, v.28, p.897–906, 2001. RICHARDSON, A. E. Making microorganims mobilize soil phosphorus. In: VALÁZQUEZ, E.; RODRÍGUEZ-BARRUECO, C. (Eds.). First international meeting on microbial phosphate solubilization, Dordrecht: Developments in Plant and Soil Science, v.102, p.85–90, 2007. ROBINSON, J .S.; SYERS, J .K. A critical evaluation of the factors influencing the dissolution of Gafsa phosphate rock. Journal of soil science, v.41, p.597-605, 1990. RODRIGUES, L. S. Estudo da diversidade de bactérias diazotróficas endofíticas associadas a cultivares de arroz inundado. Seropedica: UFRRJ, 2003. 85p. Tese (Doutorado em Agronomia - Ciências do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. RODRIGUES, E. P. Isolamento e caracterização de mutantes de Gluconacetobacter diazotrophicus defectivos na produção de auxinas. 2008. 142p. Tese (Doutorado em Biotecnologia Vegetal) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ. RODRIGUES, E.; RODRIGUES, L.; DE OLIVEIRA, A.; BALDANI, V.; TEIXEIRA, K.; URQUIAGA, S.; REIS, V. Azospirillum amazonense inoculation: effects on growth, yield and N2 fixation of rice (Oryza sativa L.). Plant and Soil, v.302, p.249–261, 2008. RODRIGUEZ, N, Summa Phytopathologica, Campinas, v. 12, n. 1-2, p. 16, 1986. RODRÍGUEZ, H.; FRAGA, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances, v.17, p.319-339, 1999. RODRIGUEZ ,H.; GONZALEZ, T.; SELMAN, G. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal Biotechnology, v.84, p.155–161, 2000. 61 RODRIGUEZ, H.; GONZALEZ, T.; GOIRE, I.; BASHAN, Y. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften, v.91, p.552–555, 2004. ROUWS, L.F.M.; MENESES, C.H.S.G.; GUEDES, H.V.; VIDAL, M.S.; BALDANI J.I.; SCHWAB S. Monitoring the colonization of sugarcane and rice plants by the endophytic diazotrophic bacterium Gluconacetobacter diazotrophicus marked with gfp and gusA reporter genes. Letters in Applied Microbiology, v.51, p. 325–330, 2010. SABINO, Daniele Cristina Costa. Interação planta-bactéria diazotrófica na cultura do arroz. 2007. 71p. Tese (Doutorado em Agronomia – Ciência do solo) - Universidade Federal Rural do Rio de Janeiro, Seropédica. SAITOU, N.; NEI, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, v.4, p.406-425, 1987. SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. Molecular cloning: a laboratory manual. 2da ed., 3. vol., Cold Spring Harbor Laboratory Press, New York, USA, 1989, 253p. SAMBROOK, J.; RUSSELL, D.W. Molecular Cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, USA, 2001, 99p. SARAVANAN, V.; MADHAIYAN, M.; OSBORNE, J.; THANGARAJU, M.; AS T. Ecological Occurrence of Gluconacetobacter diazotrophicus and Nitrogen-fixing Acetobacteraceae Members: Their Possible Role in Plant Growth Promotion. Microbial Ecology, v.55, p.130–140, 2008. SCOTT, A. J.; KNOTT, M. A. A cluster analysis method for grouping means in the analysis of variance. Biometrics, v. 30, n.2, p. 507-512, 1974. SEKINE, A.; FUJIWARA, M. e NARUMIYA, S. Asparagine residue in the rho gene product is the modification site for botulinum ADP ribosyltransferase. The Journal of Biological Chemistry, v.264, p.8602-8605, 1989. SEVILLA, M,; KENNEDY, C. Genetic analysis of nitrogen fixation and plant-growth stimulating properties of Acetobacter diazotrophicus, an endophyte of sugarcane. In: TRIPLETT, E.W. (Ed.), Prokaryotic Nitrogen Fixation: A Model System for the Analysis of a Biological Process. Horizon Scientific Press, Wymondham, p. 737–760, 2000. SHARMA, V.; KUMAR, V.; ARCHANA, G.; NARESH KUMAR, G. Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PSI3 and rock phosphate solubilization with GDH substrates as C sources. Canadian Journal Microbiology, v.51, p.477–482, 2005. SHISHIDO, M.; BREUIL, C.; CHANWAY, C. P. Endophytic colonization of spruce by growth-promotion rhizobacteria. FEMS Microbiology Ecology, v.29, p.191- 196, 1999. 62 SILVA FILHO, G. N.; VIDOR, C. Phosphate solubilization by icroorganisms in the presence of different carbon sources. Revista Brasileira de ciências do solo, v.24, p.311–319, 2000. SILVA, D.J.; QUEIROZ, A.C. Análise de Alimentos: métodos químicos e biológicos. 3.ed. Viçosa: UFV, 2002. 235p. SOMERS, E.; VANDERLEYDEN, J.; SRINIVASAN, M. Rhizosphere bacterial signaling: A love parade beneath our feet. Critical Reviews in Microbiology, v.30, p.205-240, 2004. SPAEPEN, S.; VANDERLEYDEN, J.; REMANS, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews, v.31, p.425–448, 2007. SPAEPEN, S.; VANDERLEYDEN, J.; OKON, Y.; Plant Growth-Promoting Actions of Rhizobacteria. In: VAN LOON, L. C. (Ed.). Advances in Botanical Research, Burlington: Academic Press, v. 51, p.283-320, 2009. SPENCER, J.;RAGOUT, A. Métodos microbiológicos. Humana Press Inc. Totowa, New Jersey, USA, 2001, 335 p. STEENHOUDT O.; VANDERLEYDEN J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Review, v.24, p.487–506, 2000. STEPHAN, M.P.; OLIVEIRA, M.; TEIXEIRA, K.R.S.; MARTINEZ-DRETS, G.; DÖBEREINER, J. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Letters, v.77, p.67–72, 1991. STRADER, L.C. E BARTEL, B. A new path to auxin. Natural Chemical Biology, v.4, p.337–339, 2008. STURZ, A. V.; CHRISTIE, B. R.; NOWAK, J. Bacterial endophytes: potencial role developing sustainable systems of crop production. Critical Reviews in Plant Sciences, v.19, p.1-30, 2000. SULLIVAN, J. T.; PATRICK, H. N.; LOWTHER, W. L.; SCOTT, D. B.; RONSON, C. W. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proceedings of the National Academy of Sciences, v. 92, p. 8985-8989, 1995. SUNDARAO-RAO, W.; SINHA, M. Phosphate dissolving microorganisms is the soil and Rhizosphere. Indian Journal of Agricultural Sciences, v.33, p.272-278, 1963. SUNEJA, S.; LAKSHMINARAYANA, K.; NARULA, N. Optimization of cultural conditions for hydroxamate type of siderphore production of Azotobacter chroococcum. Microbiology Research,. v. 149, p. 385–390, 1994. SURANGE, S.; KUMAR, N. Phosphate solubilization under varying pH by Rhizobium from tree legumes. Indian Journal of Experimental Biology, v.31, p.855-857, 1993. 63 SYLVESTER-BRADLEY, R.; ASAKAWA, N.; LATORRACA, S.; MAGALHÃES, F. M. M.; OLIVEIRA, L.A.; PEREIRA, R. M. Levantamento quantitativo de microrganismos solubilizadores de fosfato na rizosfera de gramíneas e leguminosas forrageiras na amazônia. Acta Amazonica, v.12, p.15-22, 1982. TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS, S. J. Análise de solos, plantas e outros materiais. Porto Alegre: UFRG, Departamento de Solos/Faculdade de Agronomia, 1995. 174p. (Boletim Técnico; 5). TAIZ, L.; ZEIGER, E. Auxin: The Growth Hormone. In: Plant physiology, 2nd edn. Sinauer Associates Inc, Sunderland, p. 725–75, 2006. TAMURA, K.; PETERSON D.; PETERSON N.; STECHER G.; NEI M.; KUMAR S MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 2011. TEALE, W. D.; PAPONOV, I. A.; PALME, K. Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology, v.7, p.847–859, 2006. THEUNIS, M.; KOBAYASHI, H.; BROUGHTON, W. J.; PRINSEN, E. Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Molecular Plant-Microbe Interactions, v.17, p.1153–1161, 2004. TRÂN VAN, V.; BERGE, O.; NGO KE, S.; BALANDREAU, J. HEULIN, T. Repeated beneficial effect of rice inoculation with a strain of Burkholderia vietnamiensis onearly and late yield components in low fertility sulphate acid soils of Vietnam. Plant and Soil, v.218, p.273–284, 2000. TRINGE, S.G.; VON MERING, C.; KOBAYASHI, A.; SALAMOV, A.A.; CHEN, K. Comparative metagenomics of microbial communities. Science, v.308: p.554–557, 2005 WAKELIN, S. A.; GREGG, A. L.; SIMPSON, R. J.; LI, G. D.; RILEY, I. T.; MCKAY A.C. Pasture management directly affects soil microbial community structure and N-cycling bacteria. Pedobiologia, v.52, p.237–251, 2009. WANG, R.F.; CAO, W. W.; Cerniglia. C. E. Phylogenetic analysis of Fusobacterium prausnitzii based upon the 16S rRNA gene sequence and PCR confirmation. International Journal of Systematic Bacteriology, v.46, p.341–34, 1996. WHITELAW, M.A. Growth promotion of plants inoculated with phosphate solubilizing fungi, Advances in Agronomy, v.69, p. 99–151, 2000. WINCH, T. Growing food a guide to food production. Netherlands, Springer, p, 128-135, 2006. 64 VALAZCO, A., CASTRO, R. Estudio de la inoculación de Azospirillum brasilense en el cultivo del arroz (variedad A‟82) en condiciones de macetas. Cultivos Tropicalis, v. 20, n. 1, p. 5-9, 1999. VIDEIRA, S. S. Taxonomia polifásica de bactérias diazotróficas do gênero sphingomonas spp. e efeito da inoculação em plantas de arroz. 2008. 126p. Dissertação (Mestrado em Agronomia - Ciência do Solo). - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. YANNI, Y.G.; EL-FATTAH FKA. Towards integrated biofertilization management with free living and associative dinitrogen fixers for enhancing rice performance in the Nile delta. Symbiosis, v.27, p.319–331, 1999. YOUNG, V.R.;PELLET, P.L. Plant proteins in relation to human protein and amino-acid nutrition. American Journal of Clinical Nutrition, v.14, n.4, p.1203-1212, 1994. YUWONO, T.; HANDAYANI, D.; SOEDARSONO, J. The role of osmotolerant rhizobacteria in rice growth under different drought conditions. Australian Journal of Agricultural Research, v.56, p.715–721, 2005. ZAIDI, A., KHAN, M. S., AAMIL, M. Bioassociative effect of rhizospheric microorganisms on growth, yield and nutrient uptake of greengram. Journal of Plant Nutrition. v.27, p.599–610, 2004. ZHANG, Z.; SCHWARTZ, S.; WAGNER, L.; MILLER, W. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, v. 7, p.203-214, 2000por
dc.rightsAcesso Abertopor
dc.subjectIndolic compounds, Biological nitrogen fixation, Plant growth promoting bacteria.eng
dc.subjectCompostos indólicos, Fixação biológica de nitrogênio, Bactérias promotoras do crescimento vegetalpor
dc.subject.cnpqAgronomiapor
dc.titleSeleção de bactérias diazotróficas solubilizadoras de fósforo e seu efeito no desenvolvimento de plantas de arrozpor
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Fitotecnia

Files in This Item:
File Description SizeFormat 
2011- German Andres Estrada Bonilla.pdf2011- German Andres Estrada Bonilla1.61 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.