???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/5720
Full metadata record
DC FieldValueLanguage
dc.creatorSant'Anna, Gustavo Souza Lima-
dc.creator.Latteshttp://lattes.cnpq.br/2232142901960029por
dc.contributor.advisor1Coelho, Irene da Silva-
dc.contributor.advisor-co1Zonta, Everaldo-
dc.contributor.referee1Coelho, Irene da Silva-
dc.contributor.referee2Coelho, Marcia Reed Rouws-
dc.contributor.referee3Schultz, Nivaldo-
dc.date.accessioned2022-05-31T19:11:25Z-
dc.date.issued2020-04-17-
dc.identifier.citationSANT'ANNA, Gustavo Souza Lima. Diversidade bacteriana em solos cultivados com diferentes plantas de cobertura sob sistema plantio direto e convencional em unidade de produção orgânica. 2020. 60 f. Dissertação (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/5720-
dc.description.resumoO Sistema Plantio Direto (SPD) tem sido adotado como alternativa ao Sistema Plantio Convencional (SPC) por promover maior conservação dos solos agrícolas. Nesse contexto, as plantas de cobertura são fundamentais na produção da palhada e na liberação de nutrientes no solo, o que influencia diretamente as populações microbianas. Assim, o objetivo deste trabalho foi avaliar a diversidade bacteriana de solos sob SPC e SPD com diferentes plantas de cobertura em uma unidade de produção orgânica no município de Seropédica-RJ. O experimento I foi conduzido em delineamento em blocos casualizados com 2 parcelas (SPC e SPD) com 4 repetições. Foi feita a semeadura a lanço da aveia preta em área total e atingido o ponto de corte, a aveia foi incorporada ou mantida na superfície do solo. Em seguida foi semeado o milho em todas as parcelas. As coletas de solos foram realizadas no tempo inicial, após o cultivo da aveia preta e após a colheita do milho na profundidade de 0-5 cm. O experimento II foi conduzido sequencialmente em delineamento fatorial (2 x 6) com parcelas subdivididas, com 2 parcelas de SPC e SPD, 6 subparcelas com as plantas de cobertura milheto, crotalária, feijão de porco, coquetel 1 e coquetel 2, utilizando 100 e 50% da quantidade sementes recomendadas para cada espécie, respectivamente, e plantas espontâneas, com 4 repetições. A coleta de solos foi realizada após o cultivo das plantas de cobertura na profundidade de 0-5 cm. Foi realizada a caracterização química e a extração do DNA total do solo para o sequenciamento do gene rrs de Bacteria. No experimento I, entre a caracterização inicial e os cultivos de milho em SPC e SPD, foi observado aumento no teor de fósforo e diminuição de carbono, aumento dos índices de alfa-diversidade e alteração na composição bacteriana, principalmente com relação ao candidato à divisão WPS-1 que teve abundância relativa aumentada e a família Micrococcaceae que apresentou queda em sua abundância relativa após a conversão para área agrícola. Após o cultivo de milho, o potássio foi maior no SPC e as famílias não classificadas da classe Spartobacteria e Chitinophagaceae foram mais abundantes no SPD. No experimento II, o cultivo de diferentes plantas de cobertura não promoveu alterações nos atributos químicos do solo. O cultivo das plantas espontâneas promoveu aumento dos índices alfa-diversidade bacteriana em relação à crotalária. Feijão de porco e os coquetéis 1 e 2 promoveram maior abundância relativa das famílias Sphingomonadaceae e Bradyrhyzobiacae, enquanto as plantas espontâneas resultaram em maior abundância relativa de bactérias não classificadas e da família Planctomycetaceae. Portanto, a conversão de área de pastagem para área de produção agrícola levou ao aumento da diversidade e alteração na estrutura da comunidade bacteriana dos solos. Não houve diferença nos índices de alfa-diversidade entre o SPC e o SPD, porém a estrutura da comunidade bacteriana foi alterada. A utilização de diferentes plantas de cobertura promoveu diferenças na estrutura da comunidade bacteriana e o cultivo das plantas espontâneas promoveu maior índice de alfa-diversidade em relação à crotalária.por
dc.description.abstractAn alternative to the Conventional Tillage (CT) for promoting higher conservation of agricultural soils is the adoption of No-tillage (NT). In this context, cover crops are fundamental in the production of straw and release nutrients in the soil, directly influencing microbial populations. Thus, the objective of this work was to evaluate the bacterial diversity in soils under CT and NT with different cover plants in an organic production unit in the municipality of Seropédica-RJ, Brazil. The experiment was conducted in a randomized block design with two plots (CT and NT) with four replications. The black oat was sown in the total area. When the cut point was reached, the black oat was incorporated or maintained on the soil surface. Then, the corn was sown in all plots. The soil was collected in the initial time, after the black oat and after corn harvesting in a depth of 0-5 cm. Experiment II was conducted in a factorial design (2 x 6) with subdivided plots, with 2 plots of CT and NT, 6 subplots with cover plants (pearl millet, sunn hemp, jack beans, cocktail 1 and cocktail 2, using 100 and 50 % of the recommended amount for each species, respectively, and spontaneous plants), with 4 repetitions. The soil was collected after the cultivation of cover plants at a depth of 0-5 cm. Chemical characterization and extraction of total soil DNA were carried out for the sequencing of the Bacteria rrs gene. In experiment I, between the initial characterization and the corn crops in CT and NT, an increase in the phosphorus content and a decrease in carbon, an increase in the alpha-diversity indexes and a change in the bacterial composition was observed, mainly in relation to the candidate for division WPS-1, which had an increased relative abundance, and the Micrococcaceae family, which showed a decrease in its relative abundance after conversion to the agricultural area. After corn, potassium was higher in CT, and Spartobacteria unclassified and Chitinophagaceae were more abundant than in NT. In experiment II, the cultivation of different cover crops did not promote changes in the soil's chemical attributes. The cultivation of spontaneous plants supported a higher bacterial alpha-diversity index concerning sunn hemp. Jack beans and cocktails 1 and 2 promoted a higher relative abundance of the Sphingomonadaceae and Bradyrhyzobiacae families. At the same time, spontaneous plants resulted in a higher relative abundance of unclassified bacteria and the Planctomycetaceae family. Therefore, the conversion from pasture area to agricultural production area led to an increase in diversity and alteration in the structure of the soil bacterial community. There was no difference in the alpha-diversity indexes between CT and NT, but the structure of the bacterial community was altered. Different cover plants promoted differences in the structure of the bacterial community, and spontaneous plants promoted a higher alpha-diversity index concerning sunn hemp.eng
dc.description.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-05-31T19:11:25Z No. of bitstreams: 1 2020 - Gustavo Souza Lima Sant'Anna.pdf: 1131065 bytes, checksum: 2be7d96a46d976540a754af6fa269047 (MD5)eng
dc.description.provenanceMade available in DSpace on 2022-05-31T19:11:25Z (GMT). No. of bitstreams: 1 2020 - Gustavo Souza Lima Sant'Anna.pdf: 1131065 bytes, checksum: 2be7d96a46d976540a754af6fa269047 (MD5) Previous issue date: 2020-04-17eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.description.sponsorshipFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiropor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69554/2020%20-%20Gustavo%20Souza%20Lima%20Sant%27Anna.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesACOSTA-MARTÍNEZ, V.; DOWD, S. E.; BELL, C. W.; LASCANO, R.; BOOKER, J. D.; ZOBECK, T. M.; UPCHURCH, D. R. Microbial Community Composition as Affected by Dryland Cropping Systems and Tillage in a Semiarid Sandy Soil. Diversity, v. 2, p. 910-931, 2010. ACOSTA-MARTINEZ, V.; DOWD, S.; SUN, Y.; ALLEN, V. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biology and Biochemistry, v. 40, n. 11, p. 2762-2770, 2008. ADKINS, N. L.; HALL, J. A.; GEORGEL, P. T. The use of quantitative agarose gel electrophoresis for rapid analysis of the integrity of protein–DNA complexes. Journal of biochemical and biophysical methods, v. 70, n. 5, p. 721-726, 2007. AHN, J. H., LEE, S. A., KIM, J. M., KIM, M. S., SONG, J., WEON, H. Y. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices. Journal of Microbiology, v. 54, p. 724-731, 2016. AISLABIE, J., DESLIPPE, J. R. Soil microbes and their contribution to soil services. In: Dymond, J. R., Ecosystem Services in New Zealand e Conditions and Trends. Manaaki Whenua Press, Lincoln, New Zealand, 2013. p. 143-161. AITA, C. BASSO, C. J.; CERETTA, C. A.; GONÇALVES, C. N.; DA ROS, C. O. Plantas de cobertura de solo como fonte de nitrogênio ao milho. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, p. 157-165, 2001. AITA, C.; GIACOMINI, S. J. Decomposição e liberação de nitrogênio de resíduos culturais de plantas de cobertura de solo solteiras e consorciadas. Revista Brasileira de Ciência do Solo, Viçosa, v.27, p.601-612, 2003. ALBUQUERQUE, L.; FRANCA, L.; RAINEY, F. A.; SCHUMANN, P.; NOBRE, M. F.; DA COSTA, M. S. Gaiella occulta gen. nov. sp. nov., a novel representative of a deep branching phylogenetic lineage within the class Actinobacteria and proposal of Gaiellaceae fam. nov. and Gaiellales ord. nov. Systematic and Applied Microbiology, v. 34, n. 8, p. 595–599, 2011. AMADO, T. J. C.; MIELNICZUK, J.; FERNANDES, S. B. V.; BAYER, C. Culturas de cobertura, acúmulo de nitrogênio total no solo e produtividade de milho. Revista Brasileira de Ciência do Solo, Viçosa, v. 23, n. 3, p.679-686, 1999. ANDRADE, Juliano Gomes de. Perdas de água por evaporação de um solo cultivado com milho nos sistemas de plantio direto e convencional. 2008. Dissertação (Mestrado) - Universidade Federal de Santa Maria, Santa Maria, 2008. ARCHANJO, L. R., BRITO, K. F. W., SAUERBECK, S. Os alimentos orgânicos em Curitiba: consumo e significado. Cadernos de Debate, v. 8, p. 1-6, 2001. BACOCCINA, D. O dilema dos orgânicos. Plant Project, ed. 05, p. 28-35, jul./ago. 2017. BAILEY, V. L.; FANSLER, S. J.; STEGEN, J. C.; MCCUE, L. A. Linking microbial community structure to β-glucosidic function in soil aggregates. The ISME Journal, London, v. 7, n. 10, p. 2044–2053, 2013. BALBINOT JR., A. A., MORAES, A.; BACKES, R. L. Efeito de coberturas de inverno e sua época de manejo sobre a infestação de plantas daninhas na cultura de milho. Planta Daninha, v.25, n. 3, p. 473-480, 2007. BARDGETT, R. D.; COOK, R. Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, v. 10, n. 3, p. 263–276, 1998. BEGON, Michael; HARPER, John L.; TOWNSEND, Colin R. Ecology: individuals, populations and communities. 3. ed. Oxford: Blackwell Science, 1996. 1068p. BENDER, S. F.; WAGG, C.; VAN DER HEIJDEN, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends in ecology & evolution, v. 31, n. 6, p. 440-452, 2016. BERGMANN, G. T.; BATES, S. T.; EILERS, K. G.; LAUBER, C. L.; CAPORASO, J. G.; WALTERS W. A.; KNIGHT, R.; FIERER, N. The under-recognised dominance of Verrucomicrobia in soil bacterial communities. Soil Biology & Biochemistry, v. 43, n. 7, p. 1450–1455, 2011. BERNARDO, G. R. B. Atividade antifúngica de actinobactérias da rizosfera de Terminalia fagifolia (Bioma Caatinga) ativas contra Candida spp. Trabalho de Conclusão de Curso - Universidade Federal de Pernambuco, Recife, 2012. BERTIN, E. G.; ANDRIOLI, I.; CENTURION, J. F. Plantas de cobertura em pré-safra ao milho em plantio direto. Acta Scientiarum Agronomy, Maringá, v. 27, n. 3, p. 379-386, 2005. BERTOL, I.; COGO, N. P.; SCHICK, J. GUDAGNIN, J. C.; AMARAL, A. J. Aspectos financeiros relacionados às perdas de nutrientes por erosão hídrica em diferentes sistemas de manejo do solo. Revista Brasileira de Ciências do Solo. v. 31, p. 133-142, 2007. BRASIL, Lei Nº. 10.831, de 23 de dezembro de 2003. Dispõe sobre a agricultura orgânica e dá outras providências. Disponível em: <http://planalto.gov.br/ccivil_03/leis/2003/L10.831.htm>. Acesso em: 12 jul. 2018. BUCKLEY, D. H.; SCHMIDT, T. M. Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environmental Microbiology, v. 5, n. 6, p. 441-452, 2003. BUCKLING, A.; KASSEN, R.; BELL, G.; RAINEY, P. B. Disturbance and diversity in experimental microcosms. Nature, v. 408, p. 961-964, 2000. BUSARI, M. A.; KUKAL, S. S.; KAUR, A.; BHATT, R.; DULAZI, A. A. Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research, v. 3, n. 2, p. 119-129, 2015. BUYER, J. S.; TEASDALE, J. R.; ROBERTS, D. P.; ZASADA, I. A.; MAUL, J. E. Factors affecting soil microbial community structure in tomato cropping systems. Soil Biology and Biochemistry, v. 42, n. 5, p. 831-841, 2010. CARBONETTO, B.; RASCOVAN, N.; ÁLVAREZ, R.; MENTABERRY, A.; VÁZQUEZ, M. P. Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS One, v. 9, n. 6, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4055693/. Acesso em: 08 set. 2020. CARVALHO, T. S.; JESUS, E. C.; BARLOW, J.; GARDNER, T. A.; SOARES, I. C.; TIEDJE, J. M.; MOREIRA, F. M. S. Land use intensification in the humid tropics increased both alpha and beta diversity of soil bacteria. Ecology, v. 97, n. 10, p. 2760-2771, 2016. CASTRO, C. M.; ALMEIDA, D. L.; RIBEIRO, R. L. D.; CARVALHO, J. F. Plantio direto, adubação verde e suplementação com esterco de aves na produção orgânica de berinjela. Pesquisa Agropecuária Brasileira, Brasília, v. 40, n. 5, p. 495-502, mai. 2005. CHAO, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics, p. 783-791, 1987. CHAO, A. Nonparametric estimation of the numbers of classes in a population. Scandinavian Journal of Statistics, v. 11, p. 265-270, 1984. COLE, J. R.; WANG, Q.; CARDENAS, E.; FISH, J.; CHAI, B.; FARRIS, R. J.; KULAMSYED- MOHIDEEN, A. S.; MCGARRELL, D. M.; MARSH, T.; GARRITY, G. M.; TIEDJE, J. M. The Ribosomal Database Project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Research, v. 37, p. 141-145, 2009. COMPANT, S.; CLÉMENT, C.; SESSITSCH, A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, v. 42, n. 5, p. 669-678, 2010. CONNELL, J. H. Diversity in tropical rain forests and coral reefs. Science, v. 199, p. 1302– 1310, 1978. CORRÊA, Manuel Pio. Dicionário das plantas úteis do Brasil e das exóticas cultivada. Rio de Janeiro: S/A, 1974. CORREA-GALEOTE, D.; BEDMAR, E. J.; FERNÁNDEZ-GONZÁLEZ, A. J.; FERNÁNDEZ-LÓPEZ, M.; ARONE, G. J. Bacterial communities in the rhizosphere of amilaceous maize (Zea mays L.) as assessed by pyrosequencing. Frontiers in Plant Science, v. 7, 2016. COSTA, F. S.; ALBUQUERQUE, J. A.; BAYER, C.; FONTOURA, S. M. V.; WOLBETO, C. Propriedades de um Latossolo Bruno afetadas pelos sistemas plantio direto e preparo convencional. Revista Brasileira de Ciência do Solo, Viçosa, v. 27, n. 3, p. 527-535, 2003. CRUZ, F. A. Instalação e calibração de lisímetro de pesagem e determinação da evapotranspiração de referência para a região de Seropédica - RJ. 2005. Dissertação (Mestrado em Fitotecnia). Universidade Federal Rural do Rio de Janeiro, Seropédica, 2005. CUBILLA, M.; REINERT, D. J.; AITA, C.; REICHERT, J. M.; RANNO, S. K. Plantas de cobertura do solo: uma alternativa para aliviar a compactação em sistema plantio direto. Revista Plantio Direto, v. 71, p. 29-32, 2002. DAROLT, Moacir Roberto. As dimensões da sustentabilidade: um estudo da agricultura orgânica na região metropolitana de Curitiba, Paraná. 2000. Tese (Doutorado em Meio Ambiente e Desenvolvimento) - Universidade Federal do Paraná, Curitiba, 2000. DAVIS, K. E. R.; JOSEPH, S. J.; JANSSEN, P. H. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Applied Environmental Microbiology, v. 71, n. 2, p. 826-834, 2005. DE BOER, W.; LEVEAU, J. H. J; KOWALCHUK, G. A.; KLEIN GUNNEWIEK, P. J. A.; ABELN, E. C. A.; FIGGE, M. J.; SJOLLEMA, K.; JANSE, J. D.; VAN VEEN, J. A. Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. International Journal of Systematic and Evolutionary Microbiology, v. 54, n. 3, p. 857-864, 2004. DE VRIES, F. T.; HOFFLAND, E.; VAN EEKEREN, N.; BRUSSAARD, L.; BLOEM, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biology and Biochemistry, v. 38, p. 2092–2103, 2006. DEBRUYN, J. M., NIXON, L. T., FAWAZ, M. N., JOHNSON, A. M., RADOSEVICH, M. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Applied Environmental Microbiology, v.77, p. 6295-6300, 2011. DEGRUNE, F.; THEODORAKOPOULOS, N.; COLINET, G.; HIEL, M. P.; BODSON, B.; TAMINIAU, B.; DAUBE, G.; VANDENBOL, M.; HARTMANN, M. Temporal dynamics of soil microbial communities below the seedbed under two contrasting tillage regimes. Frontiers in microbiology, v. 8, p. 1127, 2017. DERAKHSHANI, H.; DE BUCK, J.; MORTIER, R.; BARKEMA, H. W.; KRAUSE, D. O.; KHAFIPOUR, E. The features of fecal and ileal mucosa-associated microbiota in dairy calves during early infection with Mycobacterium avium subspecies paratuberculosis. Frontiers in Microbiology, v. 7, n. 426, 2016. DERPSCH, R.; ROTH, C.; SIDIRAS, N.; KOPE, U. Controle da erosão no Paraná, Brasil: Sistemas de cobertura do solo, plantio direto e preparo conservacionista do solo. IAPAR/GTZ, Londrina, 1991. DERPSCH, R.; SIDIRAS, N. & HEINZMANN, F.X. Manejo do solo com coberturas verdes de inverno. Pesquisa Agropecuária Brasileira, v. 20, n. 7, p. 671-773, 1985. DEVOS, D. P.; REYNAUD E. G. Evolution. Intermediate steps. Science, v. 330, p. 1187- 1188, 2010. DONEDA, Alexandre. Plantas de cobertura de solo consorciadas e em cultivo solteiro: decomposição e fornecimento de nitrogênio ao milho. 2010. Dissertação (Mestrado em Ciência do Solo) - Universidade Federal de Santa Maria, Santa Maria, 2010. DORR DE QUADROS, P.; ZHALNINA, K.; DAVIS-RICHARDSON, A.; FAGEN, J. R.; DREW, J.; BAYER, C.; CAMARGO, F. A.; TRIPLETT, E. W. The Effect of Tillage System and Crop Rotation on Soil Microbial Diversity and Composition in a Subtropical Acrisol. Diversity, v. 4, n. 4, p. 375-395, 2012. EHLERS, E. Por que Sir. Albert Howard é considerado o "pai" da Agricultura Orgânica? Disponível em: http://creatio-agro.blogspot.com/2017/01/porque-que-sir-albert-howarde. html. Acesso em: 10 jul. 2008. EILERS, K. G.; LAUBER, C. L.; KNIGHT, R.; FIERER, N. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biology & Biochemistry, v. 42, n. 6, p. 896-903, 2010. EO, J.; PARK, K.C.; KIM, M. H. Plant-specific effects of sunn hemp (Crotalaria juncea) and sudex (Sorghum bicolor × Sorghum bicolor var. sudanense) on the abundance and composition of soil microbial community. Agriculture, Ecosystems and Environment, v. 213, p. 86–93, 2015. FARIA, C. M. B.; COSTA, N. D.; FARIA, A. F. Atributos químicos de um Argissolo e rendimento de melão mediante o uso de adubos verdes, calagem e adubação. Revista Brasileira de Ciência do Solo, v.31, n.2, p.299-307, 2007. FENG, Y.; MOTTA, A. C.; REEVES, D. W.; BURMESTER, C. H.; VAN SANTEN, E.; OSBORNE, J.A. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biology & Biochemistry, v. 35, p. 1693-1703, 2003. FERREIRA, Tabajara Nunes; SCHWARZ, R. A.; STRECK, Edmar Valdir. Manejo integrado e ecológico: Elementos básicos. Porto Alegre: Emater/RS, 2000. FIERER, N.; BRADFORD, M. A.; JACKSON, R. B. Toward an ecological classificatin of soil bacterial. Ecology, v. 88, n. 6, p. 1354–1364, 2007. FIERER, N.; JACKSON, R. The diversity and biogeography of soil bacterial communities. PNAS, v. 103, n. 3, p. 626–631, 2006. FINNEY, D. M.; BUYER, J. S.; KAYE, Jason Philip. Living cover crops have immediate impacts on soil microbial community structure and function. Journal of Soil and Water Conservation, v. 72, n. 4, p. 361-373, 2017. FREIRE, Luiz Rodrigues. Manual de Calagem e Adubação do Estado do Rio de Janeiro. Brasília, DF: Embrapa; Seropédica, RJ: Editora Universidade Rural, 2013. FUKUNAGA, Y.; KURAHACHI, M.; SAKIYAMA, Y.; OHUCHI, M.; YOKOTA, A.; HARAYAMA, S. Phycisphaera mikurensis gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum Planctomycetes. The Journal of general and applied microbiology, v. 55, n. 4, p. 267-275, 2009. GIACOMINI, S. J.; AITA, C.; VENDRUSCOLO, E. R. O.; CUBILLA, M.; NICOLOSO, R. S.; FRIES, M. R. Matéria seca, relação C/N e acúmulo de nitrogênio, fósforo e potássio em misturas de plantas de cobertura de solo. Revista Brasileira de Ciência do Solo, v. 27, n. 2, p. 325-334, 2003. GOLDFARB, K. C., KARAOZ, U., HANSON, C. A., SANTEE, C. A.; BRADFORD, M. A.; TRESEDER, K. K.; WALLENSTEIN, M. D.; BRODIE, E. L. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance. Frontiers in Microbiology, v. 2, n. 94, 2011. GROVER, S. P.; BUTTERLY, C. R.; WANG, X.; TANG, C. The short-term effects of liming on organic carbon mineralisation in two acidic soils as affected by different rates and application depths of lime. Biology and fertility of soils, v. 53, n. 4, p. 431-443, 2017. HABTE, M. A.; ALEXANDER, M. Protozoa as agents responsible for the decline of Xanthomonas campestris in soil. Applied and Environmental Microbiology, v. 29, p. 159- 164, 1975. HAICHAR, F. Z.; MAROL C.; BERGE, O.; RANGEL-CASTRO J. I.; PROSSER, J. I.; BALESDENT, J.; HEULIN T.; ACHOUAK W. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal, p. 2, p. 1221-1230, 2008. HARDOIM, P. R.; VAN OVERBEEK, L. S.; VAN ELSAS, J. D. Properties of bacterial endophytes and their proposed role in plant growth. Trends in microbiology, v. 16, n. 10, p. 463-471, 2008. HEINRICHS, R.; AITA, C.; AMADO, T. J. C.; FANCELLI, A. L. Cultivo consorciado de aveia e ervilhaca: relação C/N da fitomassa e produtividade do milho em sucessão. Revista Brasileira de Ciência do Solo, Viçosa, v. 25, n. 2, p. 331-340, 2001. HERNANDEZ FORTE, I.; GARCÍA, N.; GENQUI, R.; HERNÁNDEZ, G. P.; GORDILLO, R. B.; PEDROSO, J. F. R. Selección de aislados de Rizobios provenientes de nódulos de la leguminosa forrajera Canavalia ensiformis. Cultivos Tropicales, La Habana, v. 33, n. 3, p. 27-33, 2012. HERNANI, L. C.; FREITAS, P. D.; PRUSKI, F. F.; DE MARIA, I. C.; CASTRO FILHO, C. D.; LANDERS, J. N. A erosão e seu impacto. Uso agrícola dos solos brasileiros. Rio de Janeiro: Embrapa Solos, p. 47-60, 2002. HERNANI, L. C.; KURIHARA, C. H.; SILVA, W. M. Sistemas de manejo de solo e perdas de nutrientes e matéria orgânica por erosão. Revista Brasileira de Ciência do Solo, v. 23, n. 1, p. 145-154, 1999. HERZOG, S.; WEMHEUER, F.; WEMHEUER, B.; DANIEL, R. Effects of Fertilization and Sampling Time on Composition and Diversity of Entire and Active Bacterial Communities in German Grassland Soils. PLoS ONE, v. 10, n. 12, 2015. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687936/. Acesso em: 08 set. 2020. HOLMES, A. J.; BOWYER, J.; HOLLEY, M. P.; O’DONOGHUE, M.; MONTGOMERY, M.; GILLINGS, M. R. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiology Ecology, v. 33, n. 2, p. 111-120, 2000. HOOPER, D. U.; CHAPIN, F. S.; EWEL, J. J.; HECTOR, A.; INCHAUSTI, P.; LAVOREL, S.; LAWTON, J. H.; LODGE, D. M.; LOREAU, M.; NAEEM, S.; SHMID, B.; SETALA, H.; SYMSTAD, A. J. VANDERMEER, J.; WARDLE, D. A. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, v. 75, n. 1, p. 3-35, 2005. HUGENHOLTZ, P.; PITULLE, K. L.; PACE, N. R. Novel division level bacterial diversity in a Yellowstone hot spring. Journal of Bacteriology, v. 180, n. 02, p. 366-376, 1998. HUMBERT, S.; TARNAWSKI, S.; FROMIN, N.; MALLET, M. P.; ARAGNO, M.; ZOPFI, J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. The ISME Journal, v. 4, p. 450-454, 2010. HUNGRIA, M.; CAMPO, R.; CHUEIRE, L.; GRANGE, L.; MEGIAS, M. Symbiotic effectiveness of fast-growing rhizobial strains isolated from soybean nodules in Brazil. Biology and fertility of soils, v. 33, n. 5, p. 387-394, 2001. HUNGRIA, M.; VARGAS, M. A. T. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field crops research, v. 65, n. 2-3, p. 151-164, 2000. HURLBERT, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology, v. 52, n. 4, p. 577-586, 1971. JACOBS, A.; RAUBER, R.; LUDWIG, B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil and Tillage Research, v. 102, n. 1, p. 158- 164, 2009. JANSSEN, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Applied and Environmental Microbiology, Washington, v. 72, p. 1719- 1728, 2006. JONES, R. T.; ROBESON, M. S.; LAUBER, C. L.; HAMADY, M.; KNIGHT, R.; FIERER, N. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. The ISME Journal, v. 3, p. 442-453, 2009. KASEM, S.; RICE, N.; HENRY R. J. DNA Extraction from Plant Tissue. In: Plant Genotyping II: SNP Technology, p. 219-271, 2008. LAUBER, C. L.; HAMADY, M.; KNIGHT, R.; FIERER, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, v. 75, p. 5111-5120, 2009. LEBEIS, S. L. The potential for give and take in plant–microbiome relationships. Frontiers in plant science, v. 5, p. 287, 2014. LI, R.; KHAFIPOUR, E.; KRAUSE, D.O.; ENTZ, M. H.; DE KIEVIT, T. R.; FERNANDO, W. G. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One. v. 7, n. 12, 2012. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3526490/. Acesso em: 10 mar. 2020. LIENHARD, P.; TERRAT, S.; PRÉVOST-BOURÉ, N. C.; NOWAK, V.; RÉGNIER, T.; SAYPHOUMMIE, S.; PANYASIRI, K.; TIVET, F.; MATHIEU, O.; LEVÊQUE, J.; MARON, P. A.; RANJARD, L. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agronomy for Sustainable Development. v. 34, p. 525-533, 2014. LÓPEZ, R. E. S. Canavalia ensiformis (L.) DC (Fabaceae). Revista Fitos, v. 7. n. 3. p. 146- 154, 2012. LUEDERS, T.; KINDLER, R.; MILTNER, A.; FRIEDRICH, M.; KAESTNER, M. Identification of bacterial micropredators distinctively active in a soil microbial food web. Applied Environmental Microbiology, v. 72, n. 8, p. 5342-5348, 2006. LUPWAYI, N. Z.; ARSHAD, M. A.; AZOOZ, R. H.; SOON, Y. K. Soil microbial response to wood ash or lime applied to annual crops and perennial grass in an acid soil of northwestern Alberta. Canadian Journal of Soil Science, v. 89, n. 2, p. 169-177, 2009. LUPWAYI, N. Z.; LARNEY, F. J.; BLACKSHAW, R. E., KANASHIRO, D. A.; PEARSON, D. C.; PETRI, R. M. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil and Tillage Research, v. 168, p. 1-10, 2017. MADIGAN, Michael T.; MARTINKO, John M.; BENDER, Kelly; BUCKLEY, Daniel; STAHL, David. Microbiologia de Brock. 14. ed. São Paulo: Pretice Hall, 2016. MAGURRAN, Anne E. Medindo a diversidade biológica. Curitiba, Editora da UFPR, 2011. MARSCHNER, Horst. Mineral Nutrition of Higher Plants. 2 ed. London: Academic Press, 1995. MEDEIROS, R. B. Formação e manejo de pastagens para a região do Planalto Médio e Missões. Porto Alegre: Governo do Estado do Rio Grande do Sul. Secretaria de Agricultura, 1977. MEDICI, L. O.; ROCHA, H. S. D.; CARVALHO, D. F.; PIMENTEL, C.; AZEVEDO, R. A. Acionador automático para irrigar plantas. Scientia Agricola. v. 67, n. 6, p. 727-730, 2010. MELO, A.S. O que ganhamos 'confundindo' riqueza de espécies e equabilidade em um índice de diversidade? Biota Neotropica, v. 8, n. 3, p. 21-27 2008. MONEGAT, Claudino. Plantas de cobertura do solo: características e manejo em pequenas propriedades. Chapecó, 1991. NAIR, A.; NGOUAJIO, M. Soil microbial biomass, functional microbial diversity, and nematode community structure as affected by cover crops and compost in an organic vegetable production system. Applied Soil Ecology, v. 58, p. 45-55, 2012. NAVARRO-NOYA, Y. E.; GÓMEZ-ACATA, S.; MONTOYA-CIRIACO, N.; ROJASVALDEZ, A.; SUÁREZ-ARRIAGA, M. C.; VALENZUELA-ENCINAS, C.; JIMÉNEZBUENO, N.; VERHULST, N.; GOVAERTS, B.; DENDOOVEN, L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biology and Biochemistry, v. 65, 86-95, 2013. NEMERGUT, D. R.; CLEVELAND, C. C.; WIEDER, W. R.; WASHENBERGER, C. L.; TOWNSEND, A. R. Plot-scale manipulations of organic matter inputs to soils correlate with shifts in microbial community composition in a lowland tropical rain forest. Soil Biology and Biochemistry, v. 42, n. 12, p. 2153-2160, 2010. NEMERGUT, D. R.; TOWNSEND, A. R.; SATTIN, S. R.; FREEMAN, K. R.; FIERER, N.; NEFF, J. C.; BOWMAN, W. D.; SCHADT, C. W.; WEINTRAUB, M. N.; SHMIDT, S. K. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities: implications for carbon and nitrogen cycling. Environmental microbiology, v. 10, n. 11, p. 3093-3105, 2008. NIELSEN, S.; MINCHIN, T.; KIMBER, S.; VAN ZWIETEN, L.; GILBERT, J.; MUNROE, P.; JOSEPH, S.; THOMAS, T. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems & Environment, v. 191, p. 73-82, 2014. NIMER, E. Clima. In: Geografia do Brasil. Rio de Janeiro, IBGERJ. p.35-38. 1977. NOGALES, B.; MOORE, E. R. B.; LLOBET-BROSSA, E.; ROSSELLO-MORA, R.; AMANN, R.; TIMMIS, K. N. Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenylpolluted soil. Applied Environmental Microbiology, v. 67, p. 1874-1884, 2001. OLEXOVÁ, L.; DOVICOVICOVÁ, L.; KUCHTA, T. Comparision of three types of methods for the isolation of DNA from flours, biscuits and instant paps. European Food Research and Technology, v. 218, p. 390-393, 2004. OLIVEIRA, A. S.; ALMEIDA JÚNIOR, J. F. Proposta de um produto alimentício orgânico e avaliação comparativa de sua aceitação e preferência sensorial. In: ENCONTRO LATINOAMERICANO DE INICIAÇÃO CIENTÍFICA, 12., 2008, São José dos Campos. Anais [...]. 2008. OLIVEIRA, Eva Adriana Gonçalves de. Formulações do tipo “bokashi” como fertilizantes orgânicos no cultivo de hortaliças. 2015. Tese. (Doutorado em Fitotecnia) - Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015. PEET, R. K. The measurement of species diversity. Annual Review of Ecology and Systematics, v. 5, n. 1, v. 285-307, 1974. PENNING de VRIES, E. W. T.; JANSEN, D. M.; TEM BERGE, H. F. M.; BAKEMA, A. H. Simulation of ecophysiological processes of growth in several annual crops. Wageningen: PUDOC, 1989. 271 p. PEREIRA FILHO, Israel Alexandre; FERREIRA, Alexandre da Silva; COELHO, Antônio Marco; CASELA, Carlos Roberto; KARAM, Décio; RODRIGUES, José Avelino Santos; CRUZ, José Carlos; WAQUIL, José Magid. Manejo da cultura do milheto. Sete Lagoas: Embrapa Milho e Sorgo. Circular Técnica 29, 2003. 17 p. PEREIRA, A. J.; GUERRA, J. G. M.; MOREIRA, V. F.; TEIXEIRA, M. G.; URQUIAGA, S.; POLIDORO, J. C.; ESPINDOLA, J. A. A. Desempenho agronômico de Crotalaria juncea em diferentes arranjos populacionais e épocas do ano. Seropédica: Embrapa Agrobiologia, 2005. PERRY, D. A.; AMARANTHUS, M. P.; BORCHERS, J. G.; BORCHERS, S. L.; BRAINERD, R.E. Bootstrapping in ecosystems, Washington, v. 39, n. 4, p. 230-237, 1989. POLHILL, R. M. Crotalaria. In: Flora of Tropical East Africa. Royal Botanic Gardens, Kew. 1971. QUAST, C.; PRUESSE, E.; YILMAZ, P.; GERKEN, J.; SCHWEER, T.; YARZA, P.; PEPLIES J.; GLOCKNER, F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, v. 41, p. 590–596, 2013. QUEIROZ, L. R.; GALVÃO, J. C. C.; CRUZ, J. C.; OLIVEIRA, M. F. E.; TARDIN, F. D. Supressão de plantas daninhas e produção de milho-verde orgânico em sistema de plantio direto. Planta Daninha, Viçosa, v. 28, n. 2, p. 263-270, 2010. RATHORE, Ridhdhi. Investigating the impact of soil tillage and crop rotation on the bacterial microbiome associated with winter oilseed rape under Irish agronomic conditions. 2018. Tese (Doutorado). Institute of Technology Carlow, 2018. RISSI, Daniel Vasconcelos. Análise metagnômica de solos sob floresta semidecidual e sistema plantio direto. 2015. Trabalho de Conclusão de Curso (Bacharelado em Biotecnologia) – Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, 2015. RIZZI, Sabrina Penz. Caracteres morfo-fisiológicos e produtividade de cultivares de aveia branca. 2004. Mestrado (Mestrado em Agronomia) - Faculdade de Agronomia e Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, 2004. ROUSK, J.; BÅÅTH, E.; BROOKES, P. C.; LAUBER, C. L.; LOZUPONE, C.; CAPORASO, J. G.; KNIGHT, R.; FIERER, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, v. 4, p. 1340-1351, 2010. ROUSK, J.; BROOKES, P. C.; BÅÅTH, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, v. 75, p. 1589-1596, 2009. SÁ, J. C. M. Manejo do nitrogênio na cultura do milho no sistema plantio direto. Passo Fundo: Aldeia Norte. 24 p. 1996. SALTON, J.C. O plantio direto no Brasil. In: SEMINÁRIO INTERNACIONAL SOBRE PLANTIO DIRETO NOS TRÓPICOS SUL-AMERICANOS, 1., 2001, Dourados. Anais [...] Dourados: Embrapa Agropecuária Oeste, 2001. p.13-15. SÁNCHEZ-MARAÑÓN, M., MIRALLES, I., AGUIRRE-GARRIDO, J. F.; ANGUITAMAESO, M.; MILLÁN, V.; ORTEGA, R.; GARCÍA-SALCEDO, J. A.; MARTÍNEZABARCA, F.; SORIANO, M. Changes in the soil bacterial community along a pedogenic gradient. Scientific Reports, v. 7, n. 14593, 2017. Disponível em: https://www.nature.com/articles/s41598-017-15133-x. Acesso em: 10 mai. 2020. SANTOS, D. R.; GATIBONI, L. C.; KAMINSKI, J. Fatores que afetam a disponibilidade do fósforo e o manejo da adubação fosfatada em solos sob sistema plantio direto. Ciência Rural, v. 38, n. 2, p. 576-586, 2008. SANYAL, S. K.; DE DATTA, S. K. Chemistry of phosphorus transformations in soil. Advances in Soil Science, New York, v. 16, p. 1-120, 1991. SCHLATTER, D. C.; PAUL, N. C.; SHAH, D. H.; SCHILLINGER, W. F.; BARY, A. I.; SHARRATT B.; PAULITZ T. C. Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat. Microbial Ecology, v. 78, p. 737-752, 2019. SCHLOSS, P. D.; WESTCOTT, S. L.; RYABIN, T.; HALL, J. R.; HARTMANN, M.; HOLLISTER, E. B.; LESNIEWSKI, R. A.; OAKLEY, B. B.; PARKS, D. H.; ROBINSON, C. J.; SAHL, J. W.; STRES, B.; THALLINGER, G. G.; VAN HORN, D. J.; WEBER, C. F. Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, v. 75, p. 7537-7541, 2009. SCHMIDT, R.; GRAVUER, K.; BOSSANGE, A. V.; MITCHEL, J.; SCOW, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One, v. 13, n. 2, 2018. SCHULTZ, N; JUNIOR, C. R. P.; RODRIGUES, G. C. S.; COSTA, E. S. P.; PEREIRA, M. G.; AMARAL SOBRINHO, N. M. B. Produção de couve-flor em sistema plantio direto e convencional com aveia preta como planta de cobertura do solo. Brazilian Journal of Development, v. 6, n. 5, p. 30107-30122, 2020. SENGUPTA, A.; DICK, W. A. Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. Microbial ecology, v. 70, n. 3, p. 853-859, 2015. SHANNON, C. E. A mathematical theory of communication. Bell System Technical Journal, v. 27, p. 379-423, 1948. SILVA, Desirée Maria Esmeraldino da. Influência dos sistemas de exploração agrícola convencional e orgânico em cana-de-açúcar. Tese (Doutorado) – Universidade Federal do Ceará, Fortaleza, 2007. SILVA, Fabio Cesar da. Manual de análises químicas de solos, plantas e fertilizantes. 2. ed. Brasília: Embrapa Informação Tecnológica; Rio de Janeiro: Embrapa Solos, 2009. 627 p. SILVA, J. A. A.; DONADIO, L. C.; CARLOS, J. A. D. Adubação verde em citros. Jaboticabal: FUNEP, 1999. SILVA, P. R. F.; ARGENTA G.; SANGOI L.; STRIEDER M. L.; SILVA A. A. Estratégias de manejo de coberturas de solo no inverno para cultivo do milho em sucessão no sistema semeadura direta. Ciência Rural, v. 36, n. 3, p. 1011-1020, 2006. SIMPSON, E. H. Measurement of diversity. Nature, London, v. 163, p. 688, 1949. SIX, J.; ELLIOTT, E. T.; PAUSTIAN, K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, v. 63, n. 5, p. 1350-1358, 1999. SMITH, C. R.; BLAIR, P. L.; BOYD, C.; CODY, B.; HAZEL, A.; HEDRICK, A.; KATHURIA, H.; KHURANA, P.; KRAMER, B.; MUTERSPAW, K.; PECK, C.; SELLS, E.; SKINNER, J.; TELEGER, C.; WOLFE, Z. Microbial community responses to soil tillage and crop rotation in a corn/soybean agroecosystem. Ecology and Evolution, v. 6, n. 22, 2016. SOUZA, J. L. Cultivo orgânico de hortaliça: sistema de produção. Viçosa: CPT, 1999. SOUZA, R. C.; CANTÃO, M. E.; VASCONCELOS, A. T. R.; NOGUEIRA, M. A.; HUNGRIA, M. Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Applied Soil Ecology, v. 72, p. 49-61, 2013. SOUZA, R. F.; FIGUEIREDO, C. C.; MADEIRA, N. R.; ALCÂNTARA, F. A. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables. Revista Brasileira de Ciência do Solo, v. 38, n. 3, p. 923-933, 2014. SPADOTTI, G. A. C.; COSTA, C. H. M.; FERRARI NETO, J. Ecofisiologia da aveia branca. Scientia Agraria Paranaensis, v. 11, p. 1-15, 2012. SRIDEVI, M.; MALLAIAH, K. V.; YADAV, N. C. S. Phosphate solubilization by Rhizobium isolates from Crotalaria species. Journal of Plant Sciences, v. 2, p. 635-639, 2007. TERRA-LOPES M. L.; CARVALHO P. C. F.; ANGHINONI I.; SANTOS D. T.; AGUINAGA A. A. Q.; FLORES J. P. C.; MORAES A. Sistema de integração lavourapecuária: efeito do manejo da altura em pastagem de aveia preta e azevém anual sobre o rendimento da cultura da soja. Ciência Rural, n. 39, p. 1499-1506, 2009. TIAN, Y.; LIU, J.; GAO, L. Carbon mineralization in the soils under different cover crops and residue management in an intensive protected vegetable cultivation. Scientia horticulturae, v. 127, n. 3, p. 198-206, 2011. TIMBÓ, Ana Luiza de Oliveira. Obtenção de protoplastos de híbridos triplóides entre o capim-elefante e o milheto. 2007. Dissertação (Mestrado). Universidade Federal de Lavras, Lavras, 2007. TRIPATHI, B. M.; KIM, M.; SINGH, D.; LEE-CRUZ, L.; LAI-HOE, A.; AINUDDIN, A. N.; GO, R.; RAHIM, R. A.; HUSNI, M. H. A.; CHUN, J.; ADAMS, J. M. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial Ecology, v. 64, n. 2, p. 474-484, 2012. TURNER, T. R.; RAMAKRISHNAN, K.; WALSHAW, J.; HEAVENS, D.; ALSTON, M.; SWARBRECK, D.; OSBOURN, A.; GRANT, A.; POOLE, P. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. The ISME journal, v. 7, n. 12, p. 2248-2258, 2013. UROZ, S.; CALVARUSO, C.; TURPAULT, M. P.; PIERRAT, J. C.; MUSTIN, C; FREYKLETT, P. Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Applied Environmental Microbiology, v. 73, n. 9, p. 3019-3027, 2007. VALLADARES, G. S.; PEREIRA, M. G.; ANJOS, L. H. C. Adsorção de fósforo em solos de argila de atividade baixa. Bragantia, Campinas , v. 62, n. 1, p. 111-118, 2003. VAN WYK, B. A review of the Tribe Crotalariae (Fabaceae). Contributions from the Bolus Herbarium, v. 13, p. 265-288, 1991. VAN WYK, B.; SCHUTTE, A. L. Phylogenetic Relationship in the Tribes Podalyrieae, Liparieae and Crotalarieae. In: Advances in Legume Systematics Part 7: Phylogeny. Royal Botanic Gardens, Kew. 1995. VENTER, Z. S.; JACOBS, K.; HAWKINS, H. The impact of crop rotation on soil microbial diversity: A meta-analysis. Pedobiologia, v. 59, n. 4, p. 215-223, 2016. VERMA, P.; YADAV, A. N.; KHANNAM, K. S.; KUMAR, S.; SAXENA, A. K.; SUMAN, A. Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India: diversity and plant growth promoting attributes of bacilli. Journal of Basic Microbiology, v. 56, p. 44-58, 2016. VOLK, L. B. S.; COGO, N. P.; STRECK, E. V. Erosão hídrica influenciada por condições físicas de superfície e subsuperfície do solo resultantes do seu manejo, na ausência de cobertura vegetal. Revista Brasileira de Ciência do Solo, p. 763-774, 2004. WANG, K.; ZHANG, L.; LI, J.; PAN, Y.; MENG, L.; XU, T.; ZHANG, C.; LIU, H.; HONG, S.; HUANG, H.; JIANG, J. Planococcus dechangensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils in Dechang Township, Zhaodong City, China. Antonie Van Leeuwenhoek, v. 107, p. 1075-1083, 2015. WANG, Y.; TU, C.; CHENG, L.; LI, C.; GENTRY, L.F.; HOYT, G.D.; ZHANG, X.; HU, S. Long-term impact of farming practices on soil organic carbon and nitrogen pools and microbial biomass and activity. Soil and Tillage Research, v. 117, p. 8-16, 2011. WARD, N. L.; CHALLACOMBE, J. F.; JANSSEN, P. H.; HENRISSAT, B.; COUTINHO, P. M.; WU, M.; XIE, G.; HAFT, D. H.; SAIT, M.; BADGER, J.; BARABOTE, R. D.; BRADLEY, B.; BRETTIN, T. S.; BRINKAC, L. M.; BRUCE, D.; CREASY, T.; DAUGHERTY, S. C.; DAVIDSEN, T. M.; DEBOY, R. T.; DETTER, J. C.; DODSON, R. J.; SCOTT, DURKIN A.; GANAPATHY, A.; GWINN-GIGLIO, M.; HAN, C. S.; KHOURI, H.; KISS, H.; KOTHARI, S. P.; MADUPU, R.; NELSON, K. E.; NELSON, W. C.; PAULSEN, I.; PENN, K.; REN, Q.; ROSOVITZ, M. J.; SELENGUT, J. D.; SHRIVASTAVA, S.; SULLIVAN, S. A.; TAPIA, R.; SUE THOMPSON, L.; WATKINS, K. L.; YANG, Q.; YU, C.; ZAFAR, N.; ZHOU, L.; KUSKE, C. R. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied and Environmental Microbiology, v. 75, p. 2046-2056, 2009. WHITEHEAD, T. R.; JOHNSON, C. N.; PATEL, N. B.; COTTA, M. A.; MOORE, E. R. B.; LAWSON, P. A. Savagea faecisuis gen. nov., sp. nov., a tylosinand tetracycline-resistant bacterium isolated from a swine-manure storage pit. Antonie Van Leeuwenhoek, v. 108, p. 151-161. 2015. WILLER, H.; SCHLATTER, B.; TRÁVNÍČEK, J.; KEMPER L.; LERNOUD J. The world of organic agriculture: statistics and emerging trends. Bonn: Research Institute of Organic Agriculture (FiBL); IFOAM – Organics International, 2020. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in soil science and plant analysis, v. 19, n. 13, p. 1467-1476, 1988. YIN, C.; MUETH, N.; HULBERT, S.; SCHLATTER, D.; PAULITZ, T. C.; SCHROEDER, K.; PRESCOTT A.; DHINGRA, A. Bacterial Communities on Wheat Grown Under Long- Term Conventional Tillage and No-Till in the Pacific Northwest of the United States. Phytobiomes, v. 1, n. 2, p. 83-90, 2017. YOUNG, I. M.; RITZ, K. Tillage, habitat space and function of soil microbes. Soil and Tillage Research, v. 53, n. 3-4, p. 201-213, 2000. YU, Z.; WANG, G.; JIN, J.; LIU, J.; LIU, X. Soil microbial communities are affected more by land use than seasonal variation in restored grassland and cultivated Mollisols in Northeast China. European Journal of Soil Biology, v. 47, n. 6, p. 357-363, 2011. ZAK, D. R., HOLMES, W. E., WHITE, D. C., PEACOCK, A. D., TILMAN, D. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology, v. 84, p. 2042-2050, 2003. ZHOU, Y.; ZHU, H.; YAO, Q. Improving soil fertility and soil functioning in cover cropped agroecosystems with symbiotic microbes. In: Agro-Environmental Sustainability. Springer, Cham, 2017. p. 149-171. ZILLI, J. E.; RUMJANEK, N. G.; XAVIER, G. R.; COUTINHO, H. L. C.; NEVES, M. C. P. Diversidade microbiana como indicador de qualidade do solo. Cadernos de Ciência & Tecnologia, Brasília, v. 20, n. 3, p. 391-411, 2003.por
dc.rightsAcesso Abertopor
dc.subjectDiversidade microbianapor
dc.subjectGene rrspor
dc.subjectSequenciamento de Nova Geraçãopor
dc.subjectMicrobial diversityeng
dc.subjectrrs geneeng
dc.subjectNext-Generation Sequencingeng
dc.subject.cnpqAgronomiapor
dc.titleDiversidade bacteriana em solos cultivados com diferentes plantas de cobertura sob sistema plantio direto e convencional em unidade de produção orgânicapor
dc.title.alternativeBacterial diversity in soils cultivated with cover crops under no-tillage and conventional tillage in the organic production uniteng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Files in This Item:
File Description SizeFormat 
2020 - Gustavo Souza Lima Sant'Anna.pdf1.1 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.