???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/4147
Full metadata record
DC FieldValueLanguage
dc.creatorBarbosa, Rodrigo Rocha-
dc.creator.Latteshttp://lattes.cnpq.br/2236069210294286por
dc.contributor.advisor1Queiroz, Margareth Maria de Carvalho-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9360088536183208por
dc.contributor.advisor-co1Braga, Marina Vianna-
dc.contributor.referee1Nunes, Antônio José Mayhé-
dc.contributor.referee2Costa, Janyra Oliveira-
dc.contributor.referee3Thyssen, Patrícia Jaqueline-
dc.contributor.referee4Mello, Rubens Pinto de-
dc.date.accessioned2020-11-18T11:42:23Z-
dc.date.issued2015-03-25-
dc.identifier.citationBARBOSA, Rodrigo Rocha. Quimiotaxonomia de insetos necrófagos Calliphoridae, Muscidae, Sarcophagidae e Stratiomyidae (Diptera) de potencial forense utilizando perfis de hidrocarbonetos cuticulares. 2015. 97 f. Tese (Doutorado em Biologia Animal) - Recursos Florestais e Engenharia Florestal Universidade Federal Rural do Rio de Janeiro, Seropédica, 2015.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/4147-
dc.description.resumoA quimiotaxonomia baseada em perfis de hidrocarbonetos cuticulares (HCs) é uma ferramenta taxonômica que tem sido utilizada em insetos desde a década de 70 e sua utilização é baseada em sua espécie-especificidade. Em Diptera, estudos importantes têm sido publicados demonstrando que HCs podem ser utilizados em quimiotaxonomia, sendo úteis inclusive para distinção de espécies crípticas. A família Sarcophagidae possui espécies de importância forense, que são pioneiras na degradação cadavérica e aquelas dos gêneros Peckia Robineau-Desvoidy, 1830 e Oxysarcodexia Townsend, 1917 são encontradas frequentemente em carcaças de animais e cadáveres humanos. Este estudo teve como objetivo descrever, através da cromatografia gasosa acoplada à espectrometria de massas (CG-EM), os perfis dos HCs dos adultos de nove espécies de Sarcophagidae, considerando o sexo e a distribuição geográfica, além de comparar os perfis resultantes com os de outras espécies das famílias Calliphoridae, Muscidae e Stratiomyidae. As extrações dos HCs foram feitas em triplicata usando dez fêmeas e/ou dez machos para cada espécie coletadas em campo. A metodologia de extração e análise seguiu os protocolos anteriormente descritos. Utilizamos o CG-EM do Setor de Agrotóxico do Laboratório de Toxicologia da Fundação Oswaldo Cruz. Foram identificados apenas os HCs com comprimento de cadeia entre 21 e 40 carbonos, por serem os mais comumente encontrados nos insetos. A abundância relativa de cada pico foi obtida calculando sua área em relação à área total da amostra, sendo identificados apenas aqueles representando mais de 0,5%. Ao todo foram identificados 213 compostos classificados como n-alcanos, alcanos metil-ramificados e alcenos entre 22 e 39 carbonos na cadeia principal (CCP). Nos Sarcophagidae foram identificados 164 compostos variando entre 22 e 39 CCP e cada espécie apresentou um número diferente de HCs identificados. Oxysarcodexia thornax foi a espécie com maior quantidade de HCs identificados (48 compostos), contrastando com Peckia (Squamatodes) ingens que teve a menor (26 compostos). Todas as espécies de Sarcophagidae mostraram HCs específicos, como Malacophagomyia filamenta que foi a única que apresentou trimetilalcanos em sua composição, além de ser a com maior quantidade de HCs específicos (14), enquanto que Oxysarcodexia intona apresentou a menor quantidade deles (2). Algumas espécies apresentaram dimorfismo sexual, exemplificado por Ravinia belforti, cujos machos obtiveram 41 HCs com mais de 0,5% de abundância e as fêmeas 32. As populações de O. thornax de diferentes regiões do Brasil apresentaram cromatogramas semelhantes, mas, como esperado, houve oscilações nas abundâncias do HCs compartilhados e alguns poucos específicos por população. Os dois dendrogramas gerados para avaliar a similaridade entre os perfis de HCs das espécies resultaram em diferentes relações. Com a inclusão dos n-alcanos, o dendrograma mostrou boa correlação entre as espécies de Sarcophagidae, mas não entre os Calliphoridae e os Muscidae. No entanto, ao excluir os n-alcanos da análise, as espécies de Sarcophagidae continuaram com boa correlação, as de Calliphoridae e Muscidae ficaram melhor correlacionadas e Stratiomyidae, como esperado, se apresentou como a espécie mais dissimilar. Os resultados se mostraram promissores na utilização desta técnica na identificação de espécies de Sarcophagidae e de outras famílias de importância forense, bem como tornou possível a montagem de um banco de dados com informações acerca da quimiotaxonomia dessas espécies.por
dc.description.abstractThe chemotaxonomy based on cuticular hydrocarbon profiles (CHs) is a taxonomic tool that has been used for insects since the 1970's and their use is based on the species-specificity. In Diptera, significant studies have been published showing that CHs can be used in chemotaxonomy, being useful even for distinction of cryptic species. The Sarcophagidae family include species of forensic importance, which are pioneers in cadaveric degradation and those of genres Peckia Robineau-Desvoidy, 1830 and Oxysarcodexia Townsend, 1917 are often found in animal carcasses and human corpses. This study aimed to describe, by gas chromatography coupled tomass spectrometry (GC-MS), the profiles of the CHs of adults from nine species of the family Sarcophagidae, considering gender and geographical distribution, and compare the resulting profiles with the other species of the families Calliphoridae, Muscidae and Stratiomyidae. The extraction of CHs were made in triplicate using ten female and/or ten males for every species collected in the field. The methodology used for the extraction and analysis followed previously described protocol. We used the GC-MS from the Laboratório de Toxicologia of the Fundação Oswaldo Cruz. Only the CHs with chain length ranging from 21 to 40 carbons were identified, since these are the most commonly found in insects. The relative abundance of each peak was obtained by calculating its area in relation to the total area of the sample, and only those with more than 0.5% were identified. Altogether, 213 compounds were identified and classified as n-alkanes, methyl-branched alkanes and alkenes ranging from 22 to 39 carbons in the main chain (CMC). In Sarcophagidae 164 compounds were identified ranging from 22 to 39 CMC and each species had a different number of identified CHs. Oxysarcodexia thornax was the species with the largest number of identified CHs (48 compounds), contrasting with Peckia (Squamatodes) ingens with the fewest (26 compounds). All species of Sarcophagidae presented specific HCs, as Malacophagomyia filamenta, which was the only that presented trimethylalkanes in its profile as well as having the largest number of specific CHs (14), while Oxysarcodexia intona had the lowest amount (2). Some species show sexual dimorphism, as Ravinia belforti, whose males presented 41 and females 32 HCs with more than 0.5% of abundance. The populations of O. thornax from different regions of Brazil showed similar chromatograms, but, as expected, there were fluctuations in the abundance of shared CHs and only a few specific per population. The two dendrograms generated to assess the similarity among the HCs profiles of the species resulted in different relationships. When n-alkanes are taken into account, the dendrogram showed good correlation among the species of Sarcophagidae, but not among Calliphoridae and Muscidae. However, when excluding the n-alkanes from the analysis, the species of Sarcophagidae continued with good correlation, the Calliphoridae and Muscidae were better correlated and Stratiomyidae, as expected, was presented as the most dissimilar species. The results showed promising use of this technique for the identification of species from Sarcophagidae,and other forensic important families , making it possible to establish a chemotaxonomic database of these species.eng
dc.description.provenanceSubmitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-18T11:42:23Z No. of bitstreams: 1 2015 - Rodrigo Rocha Barbosa.pdf: 2342499 bytes, checksum: 5961e31f57d6ce1b51146fc09bffc1cf (MD5)eng
dc.description.provenanceMade available in DSpace on 2020-11-18T11:42:23Z (GMT). No. of bitstreams: 1 2015 - Rodrigo Rocha Barbosa.pdf: 2342499 bytes, checksum: 5961e31f57d6ce1b51146fc09bffc1cf (MD5) Previous issue date: 2015-03-25eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, Brasil.por
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/63018/2015%20-%20Rodrigo%20Rocha%20Barbosa.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAKINO, T. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Applied Entomology and Zoology, v. 41, p. 667–677, 2006. ARMOLD, M. T.; REGNIER, F. E. A developmental study of the cuticular hydrocarbons of Sarcophaga bullata. Journal of Insect Physiology, v. 21, p. 1827-1833, 1975. BAKER, G.; PEPPER, J. H.; JOHNSON, L. H.; HASTINGS, E. Estimation of the composition of the cuticular wax of the Mormon cricket, Anabrus simplex Hald. Journal of Insect Physiology, v. 5, p. 47–60, 1960. BAKER, G. L.; VROMAN, H. E.; PADMORE, J. Hydrocarbons of the American cockroach. Biochemical and Biophysical Research Communications, v. 13, p. 360–365, 1963. BAGNÈRES, A. G.; BLOMQUIST, G. J. Site of synthesis, mechanism of transport and selective deposition of hydrocarbons. In: BLOMQUIST, G., J.; BAGNÈRES, A. G. (Org.) Insect hydrocarbons: biology, chemistry and chemical ecology, Cambridge University Press, 2010. p. 75–99. BAGNÈRES, A. G.; WICKER-THOMAS, C. Chemical taxonomy with hydrocarbons. In: BLOMQUIST, G., J.; BAGNÈRES, A. G. (Org.) Insect hydrocarbons: biology, chemistry and chemical ecology, Cambridge University Press, 2010. p. 121-162. BARBOSA, R.R; MELLO, R.P.; MELLO-PATIU, C.A.; QUEIROZ, M.M.C. New records of calyptrate dipterans (Fanniidae, Muscidae, Sarcophagidae) associated with the decomposition of domestic pigs in Brazil. Memórias do Instituto Oswaldo Cruz, v. 104, p. 923-926, 2009. BARBOSA, R.R; MELLO-PATIU, C.A.; URURAHY-RODRIGUES, A.; BARBOSA, C.G.; QUEIROZ, M.M.C. Temporal distribution of ten calyptrate dipteran species of medicolegal importance in Rio de Janeiro, Brazil. Memórias do Instituto Oswaldo Cruz, v. 105, p. 191-198, 2010. BARROS, R. M.; MELLO-PATIU, C. A.; PUJOL-LUZ, J. R. Sarcophagidae (Insecta, Diptera) associados à decomposição de carcaças de Sus scrofa Linnaeus (Suidae) em área de Cerrado do Distrito Federal, Brasil. Revista Brasileira de Entomologia, v. 52, p. 606-609, 2008. 84 BARTELT, R. J.; ARMOLD, M. T.; SCHANER, A. M.; JACKSON, L. L. Comparative analysis of cuticular hydrocarbons in the Drosophila virilis species group. Comparative Biochemistry and Physiology, v. 83, p. 731-742, 1986. BENECKE, M. A brief history of forensic entomology. Forensic Science International, v. 120, p. 2-14, 2001. BENECKE, M.; LESSIG, R. Child neglect and forensic entomology. Forensic Science International, v. 120, p. 155-159, 2001. BLOMQUIST, G. J. Structure and analysis of insect hydrocarbons. In: BLOMQUIST, G., J.; BAGNÈRES, A. G. (Org.) Insect hydrocarbons: biology, chemistry and chemical ecology, Cambridge University Press, 2010. p. 121-162. BLOMQUIST, G. J.; NELSON, D. R.; RENOBALES, M. D. Chemistry, biochemistry, and physiology of insect cuticular lipids. Archives of Insect Biochemistry and Physiology, v. 6, p. 227–265, 1987. BRAGA, M. V.; BARBOSA, R. R.; QUEIROZ, M. M. C.; BLOMQUIST, G. J. Novas Práticas em Entomologia Forense – Hidrocarbonetos Cuticulares como Ferramenta para Identificação de Espécies de Insetos. In: OLIVEIRA-COSTA, J (Org.) Insetos Peritos: A Entomologia Forense no Brasil, Millenium Editora, 2013b. p. 287-307. BRAY, J. R.; CURTIS, J. T. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, v. 27, p. 325–349, 1957. BRAGA, M. V.; PINTO, Z. T.; QUEIROZ, M. M. C.; MATSUMOTO, N.; BLOMQUIST, G. J. Cuticular hydrocarbons as a tool for the identification of insect species: puparial cases from Sarcophagidae. Acta Tropica, v. 128, p. 479-485, 2013a. BROWN, W. V.; MORTON, R.; SPRADBERY, J. P. Cuticular hydrocarbons of the Old World screw-worm fly, Chrysomya bezziana Villeneuve (Diptera: Calliphoridae). Chemical characterization and quantification by age and sex. Comparative Biochemistry and Physiology, v. 101, p. 665–671, 1992. BROZA, M.; BLONDHEIM, S.; NEVO, E. New species of mole crickets of the Gryllotalpa gryllotalpa group (Orthoptera: Gryllotalpidae) from Israel, based on morphology, song recordings, chromosomes and cuticular hydrocarbons, with comments on the distribution of the group in Europe and the Mediterranean region. Systematic Entomology, v. 23, p. 125-135, 1998. 85 BUENAVENTURA, E.; PAPE, T. Revision of the New World genus Peckia Robineau- Desvoidy (Diptera: Sarcophagidae). Zootaxa, v. 36, p. 001–087, 2013. BUTCHER, J. B.; MOORE, H.E.; DAY, C.R.; ADAM, C. D.; DRIJFHOUT, F.P. Artificial neural network analysis of hydrocarbon profiles for the ageing of Lucilia sericata for post mortem interval estimation. Forensic Science International, v. 232, p. 25–31, 2013. CARLSON, D. A.; BERNIER, U. R.; HOGSETTE, J. A.; SUTTON, B. D. Distinctive Hydrocarbons of the Black Dump Fly, Hydrotaea aenescens (Diptera: Muscidae). Archives of Insect Biochemistry and Physiology, v. 48, p. 167–178, 2001. CARLSON, D. A; SERVICE, M. W. Differentiation between species of the Anopheles gambiae Giles complex (Diptera: Culicidae) by analysis of cuticular hydrocarbons. Annals of Tropical Medicine and Parasitology, v. 73, p. 589–592, 1979. CARLSON, D. A.; SERVICE, M. W. Identification of mosquitoes of Anopheles gambiae species complex A and B by analysis of cuticular components. Science, v. 207, p. 1089–1091, 1980. CARLSON, D. A.; SCHLEIN, Y. Unusual polymethyl alkenes in tsetse flies acting as abstinon in Glossina moristans. Journal of Chemical Ecology, v. 17, p. 267–284, 1991. CARVALHO, C. J. B.; MELLO-PATIU, C. A. Key to the adults of the most common forensic species of Diptera in South America. Revista Brasileira de Entomologia, v. 52, p. 390-406, 2008. CARVALHO, L. M. L.; THYSSEN, P. J.; LINHARES, A. X.; PALHARES, F. A. B. A checklist of arthropods associated with pig carrion and human corpses in southeastern Brazil. Memórias do Instituto Oswaldo Cruz, v. 95, p. 135-138, 2000. CATTS, E. P.; HASKELL, N. H. Entomology and death: a procedural guide. Clemson Joyce’s Print Shop1991. 182 p. CHAPMAN, R. F.; ESPELIE, K. E.; SWORDS, G. A. Use of Cuticular Lipids in Grasshopper Taxonomy: A Study of Variation in Schistocerca shoshone (Thomas). Biochemistry and. Systematic Ecology, v. 23, p. 383-398, 1995. 86 CHIBNALL, A. C .; PIPER, S. H .; POLLARD, A.; WILLIAMS, E. F.; SAHAI, P. N. The constitution of the priary alcohols, fatty acids and paraffins present in plant and insect waxes. Biochemical Journal, v. 28, p. 2189–2208, 1934. CHINO, H.; DOWNER, R. G. H.; WYATT, G. R.; GILBERT, L. I. Lipophorins, a major class of lipoproteins of insect haemolymph. Insect Biochemistry, v. 11, p. 491, 1981. CVAČKA, J.; JIROŠ, P.; SOBOTNĪK, J.; HANUS, J.; SVATOŠ, A. Analysis of insect cuticular hydrocarbons using matrix-assisted laser desorption/ionization massspectrometry. Journal of Chemical Ecology, v. 32, p. 409–434, 2006. d`ALMEIDA, J. M. Sinantropia de Sarcophagidae (Diptera) na região metropolitana do Rio de Janeiro. Arquivos da Universidade Federal Rural do Rio de Janeiro, v. 7, p. 101-110, 1984. d`ALMEIDA, J. M. Ovipositional substrates used by calyptrate Diptera in Tijuca Forest, Rio de Janeiro, RJ. Memórias do Instituto Oswaldo Cruz, v. 89, p. 261-264, 1994. d`ALMEIDA, J. M.; LIMA, S. F. Atratividade de diferentes iscas e suas relações com as fases de desenvolvimento ovariano em Calliphoridae e Sarcophagidae (Diptera). Revista Brasileira de Zoologia, v. 11, p. 177-186, 1994. d`ALMEIDA, J. M.; ALMEIDA, J. R. Longevidade e Curva de Sobrevivência de Oito Espécies de Dípteros Caliptrados (Calliphoridae, Muscidae e Sarcophagidae) em Condições de Laboratório. Revista Brasileira de Biologia, v. 56, p. 497-505, 1996. DIAS, E. S.; NEVES, D. P.; LOPES, H. S. Estudos sobre a fauna de Sarcophagidae (Diptera) de Belo Horizonte, Minas Gerais - II. variação sazonal. Memórias do Instituto Oswaldo Cruz, v. 79, p. 409-412, 1984. DIETEMANN, V.; CHRISTIAN, P.; JÜRGEN, L.; VIRGINIE, T.; BERT, H. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proceedings of the National Academy of Sciences of the United States of America, v. 100, p. 10341–10346, 2003. DRIJFHOUT, F. P. Cuticular Hydrocarbons: A New tool in Forensic Entomology? In: AMENDT, J. (Org.) Current Concepts in Forensic Entomology. Springer Science and Business Media, 2010. p. 220-232. 87 EBBS, M. L.; AMREIN, H. Taste and pheromone perception in the fruit fly Drosophila melanogaster. European Journal of Physiology, v. 454, p. 735-747, 2007. ESPELIE, K. E.; BERNAYS, E. A. Diet-related differences in the cuticular lipids of Manduca sexta larvae. Journal of Chemical Ecology, v. 15, p. 2003–2017, 1989. ESPELIE, K.; CHAPMAN, R. F.; SWORD, G. A. Variation in the Surface Lipids of the Grasshopper, Schistocerca americana (Drury). Biochemistry and Systematic Ecology, v. 22, p. 563-575, 1994. ESTRADA-PEÑA, A.; CASTELLÁ, J.; MORENO, J. A. Using cuticular hydrocarbon composition to elucidate phylogenies in tick populations (Acari: Ixodidae). Acta Tropica v. 58, p. 51–71, 1994. FERVEUR, J. F.; JALLON, J. M. Genetic control of male cuticular hydrocarbons in Drosophila melanogaster. Genetic Research, v. 67, p. 211–218, 1996. FREIRE, O. Algumas notas para o estudo da fauna cadavérica da Bahia. Gazeta Médica da Bahia, v. 46, p. 110–125, 1914a. FREIRE, O. Algumas notas para o estudo da fauna cadavérica da Bahia. Gazeta Médica da Bahia, v. 46, p. 149–162, 1914b. FREIRE, O. Fauna cadavérica brasileira. Revista de Medicina, v. 3-4, p. 15–40, 1923. GEBRE-MICHAEL, T.; LANE, R. P.; PHILLIPS, A.; MILLIGAN, P.; MOLYNEUX, D. H. Contrast in the cuticular hydrocarbons of sympatric Phlebotomus (Synphlebotomus) females (Diptera: Phlebotominae). Bulletin of Entomological Research, v. 84, p. 225–231, 1994. GETAHUNA, M. N. B; CECCHIC, G.; SEYOUMA, E. Population studies of Glossina pallidipes in Ethiopia: emphasis on cuticular hydrocarbons and wing morphometric analysis. Acta Tropica, v. 138, p. 12-21, 2014. GIBBS, A. G. Lipid melting and cuticular permeability: news insights into an old problem. Journal of Insect Physiology, v. 48, p. 391-400, 2002. GINZEL, M. D.; BLOMQUIST, G. J.; MILLAR, J. G.; HANKS, L. M. Role of contact pheromones in mate recognition in Xylotrechus colonus. Journal of Chemial Ecology, v. 29, p. 533–545, 2003. 88 GIROUX, M.; PAPE, T.; WHEELER, T. A. Towards a phylogeny of the flesh flies (Diptera:Sarcophagidae): morphology and phylogenetic implications of the acrophallus in the subfamily Sarcophaginae. Zoological Journal of the Linnean Society, v. 158, p. 740–778, 2010. GOFF, M. L.; OMORI, A. I.; GOODBROD, J. R. Effect of cocaine in tissue on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae). Journal of Medical Entomology, v. 26, p. 91–93, 1989. GOODRICH, B. S. Cuticular lipids of adults and puparia of the Australian sheep blowfly Lucilia cuprina (Wied.). Journal of Lipid Research, v. 11, p. 1-6, 1970. GREENBERG, B. Flies as forensic indicators. Journal of Medical Entomology, v. 28, p. 565 – 577, 1991. GUIMARÃES, J. H.; PAPAVERO, N. Myiasis in man and animals in the neotropical region. NY. Ed. Plêiade, 1999. 308 p. HADLEY, N. F. Epicuticular lipids of the desert tenebrionid beetle, Eleodes armatus: seasonal and acclimatory effects on chemical composition. Insect Biochemistry, v. 7, p. 277–283, 1977. HAVERTY, M. I.; GRACE, J. K.; NELSON, L. J.; YAMAMOTO, R. T. Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Journal of Chemical Ecology, v. 22, p. 1813-1834, 1996. HAVERTY, M. I.; NELSON, L. J.; PAGE, M. Cuticular hydrocarbons of four populations of Coptotermes formosanus Shiraki in the United States. Similarities and Origins of Introductions. Journal of Chemical Ecology, v. 16, p. 1635-1647, 1990. HEFETZ, A. Hymenopteran Exocrine Secretions as a Tool for Chemosystematic Analysis: Possibilities and Constraints. Biochemistry and Systematic Ecology, v. 21, p. 163-169, 1993. HEY, J. On the failure of modern species concepts. Trends in Ecology & Evolution, v. 21, p. 447–450, 2006. HOWARD, R. W.; AKRE, R. D.; GARNETT, W. B. Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Annals of Entomological Society of America, v. 83, p. 607–616, 1990. HOWARD, R. W.; BLOMQUIST, G. J. Ecological, behavioural, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology. v. 50, p. 371—393, 2005. 89 INTRONA, F.; CAMPOBASSO, C.P.; GOFF, M. L. Entomotoxicology. Forensic Science International, v. 15, p. 42-47, 2001. ISHII, K.; HIRAI, Y.; KATAGIRI, C; KIMURA, M. T. Sexual isolation and cuticular hydrocarbons in Drosophila elegans. Heredity, v. 87, p. 392–399, 2001. JACKSON, L. L. Cuticular lipids of insects II. Hydrocarbons of the cockroaches Periplaneta australasiae, Periplaneta brunea and Periplaneta fuliginosa. Lipids, v. 5, p. 38–41, 1970. JACKSON, L. L.; BAKER, G. L. Cuticular lipids of insects. Lipids, v. 5, p. 239–246, 1970. JACKSON. L.; ARMOLD M. T.; REGNIER F. E. Cuticular lipids of adult flesh flies, Sarcophaga bullata. Insect Biochemistry, v. 4, p. 369-379, 1974. JACKSON, L. L.; ARMOLD, M. T.; BLOMQUIST, G. J. Surface lipids of Drosophila melanogaster: comparison of the lipids from female and male wild type and sex linked yellow mutant. Insect Biochemistry, v. 11, p. 87–91, 1981. JALLON, J. M.; WICKER-THOMAS, C. Genetic studies on pheromone production in Drosophila. In: BLOMQUIST, G. J.; VOGT, R. G. (Org.) Insect Pheromone Biochemistry and Molecular Biology. The biosynthesis and detection of pheromones and plant volatiles. London: Elsevier, 2003, p 253–281. KAIB, M.; BRANDL, R.; BAGINE, R. K. N. Cuticular hydrocarbon profiles: A valuable tool in termite taxonomy. Naturwissenschaften, v. 78, p. 176-179, 1991. KATHER, R.; MARTIN, S. J. Cuticular hydrocarbon profiles as a taxonomic tool: advantages, limitations and technical aspects. Physiological Entomology, v. 37, p. 25–32, 2012. LAVINE, B. K.; DAVIDSON, C.; VANDER MEER, R. K.; LAHAV, S.; SOROKER, V.; HEFETZ, A. Genetic algorithms for deciphering the complex chemosensory code of social insects. Chemometrics and Intelligent Laboratory Systems, v. 66, p. 51–62, 2003. LEANDRO, M. J. F.; d`ALMEIDA, J. M. Levantamento de Calliphoridae, Muscidae, Fanniidae e Sarcophagidae em um fragmento de mata na Ilha do Governador, Rio de Janeiro, RJ. Iheringia, v. 95, p. 377-381, 2005. LEDO, R. M. D.; BARROS, R. M.; PUJOL-LUZ, J. R. Sarcophagidae and Calliphoridae related to Rhinella schneideri (Anura, Bufonidae), Bothrops moojeni (Reptilia, Serpentes) and 90 Mabuya frenata (Reptilia, Lacertilia) carcasses in Brasília, Brazil. Revista Brasileira de Entomologia, v. 56, p. 377–380, 2012. LIANG, D.; SILVERMAN, J. “You are what you eat”: Diet modfies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, v. 87, p. 412-416, 2000. LOCKEY, M. Permeability of insect cuticle to water and lipids. Science, v. 147, p. 295–298, 1965. LOCKEY, K. H. Insect cuticular hydrocarbons. Comparative Biochemistry and Physiology, v. 65, p. 457–462, 1980. LOCKEY, K. H. Lipids of the insect cuticle: origin, composition and function. Comparative Biochemistry Physiology, v. 89, p. 595–645, 1988. LOMMELEN, E.; JOHNSON, C. A.; DRIJFHOUT, F. P.; BILLEN, J.; WENSELEERS, T.; GOBIN, B. Cuticular hydrocarbons provide reliable cues of fertility in the ant Gnamptogenys striatula. Journal Chemical Ecology, v. 32, p. 2023-2034, 2006. LOPES, H. S. Contribuição ao conhecimento das espécies do gênero Oxysarcodexia Townsend, 1917. Boletim da Escola Nacional de Veterinária, v. 1, p. 62-136, 1945. LOPES, H. S. Contribuicão ao conhecimento das espécies do gênero Paraphrissopoda Townsend (Diptera, Sarcophagidae). Memórias do Instituto Oswaldo Cruz, v. 52, p. 83-87, 1954. LOPES, H. S. Family Sarcophagidae. In: Papavero, N. (Org), A catalog of the Diptera of the Americas south of the United States São Paulo; Departmento de Zoologia, Secretaria da Agricultura, 1969. p. 1-88. LOPES, H.S. Collecting and rearing Sarcophagidae flies (Diptera) in Brazil during forthy years. Anais da Academia Brasileira de Ciências, v. 45, p. 279-291, 1973. LOPES, H. S. On Eumacronychia sternalis Allen (Diptera, Sarcophagidae) with larvae living on eggs and hatchilings of the East Pacific Green Turtle. Revista Brasileira de Biologia, v. 42, p. 425-429, 1982. LUCAS, C.; FRESNEAU, D.; KOLMER, K.; HEINZE, J.; DELABIE, J.H.; PHO, D. B. A multidisciplinary approach to discriminating different taxa in the species complex 91 Pachycondyla villosa (Formicidae). Biological Journal of Linnean Society, v. 75, p. 249-259, 2002. MARINHO, M. A. T.; JUNQUEIRA, A. C. M.; PAULO, D. F.; ESPOSITO, M. C.; VILLET, M. H.; AZEREDO-ESPIN, A. M. L. Molecular phylogenetics of Oestroidea (Diptera: Calyptratae) with emphasis on Calliphoridae: Insights into the inter-familial relationships and additional evidence for paraphyly among blowflies. Molecular Phylogenetics and Evolution, v. 65, p. 840–854, 2012. MARTIN, C.; SALVY, M.; PROVOST, E.; BAGNERES, A. G.; ROUX, M.; CRAUSER, D.; CLEMENT, J. L.; LECONTE, Y. Variations in chemical mimicry by the ectoparasititic mite Varroa jacobsoni according to the developmental stage of the host honey bee Apis mellifera. Insect Biochemistry and Molecular Biology, v. 31, p. 365–379, 2001. MARTIN, S. J.; HELANTERÄ, H.; DRIJFHOUT, F. Evolution of species-specific cuticular hydrocarbon patterns in Fomica ants. Biological Journal of Linnean Society, v. 95, p. 131-140, 2008. McALPINE, J.F. Phylogeny and classification of the Muscomorpha. In: McALPINE, J.F. (Org.) Manual of Nearctic Diptera. Research Branch, Agriculture Canada, 1989, v. 3, p. 1397– 1518. MELLO-PATIU, C. A.; PASETO, M. L.; FARIA, L. S.; MENDES, J.; LINHARES, A. X. Sarchophagid flies (Insecta, Diptera) from pig carcasses in Minas Gerais, Brazil, with nine new records from the Cerrado, a threatened Neotropical biome. Revista Brasileira de Entomologia, v. 58, p. 142–146, 2014. MENDES, J.; LINHARES, A. X. Cattle Dung Breeding Diptera in Pastures in Southeastern Brazil: Diversity, Abundance and Seasonallity. Memórias do Instituto Oswaldo Cruz, Rio de Janeiro, v. 97, p. 37-41, 2002. MONTEIRO-FILHO, E. L. A.; PENEREIRO, J. L. Estudo da decomposição e sucessão sobre uma carcaça animal numa área do Estado de São Paulo, Brasil. Revista Brasileira de Biologia, v. 47, p. 289-295, 1987. MOORE, H. E.; ADAM, C. D.; DRIJFHOUT, F. P. Potential use of hydrocarbons for aging Lucilia sericata blowfly larvae to establish the postmortem interval. Journal of Forensic Science, v. 58, p. 404–412, 2013. 92 MOORE, H. E. A.; CRAIG, D.; ADAM, B.; DRIJFHOUT, F. P. Identifying 1st instar larvae for three forensically important blowfly species using ‘‘fingerprint’’ cuticular hydrocarbon analysis. Forensic Science International, v. 240, p. 48–53, 2014. MORETTI, T. C.; ALLEGRETTI, S. M.; MELLO-PATIU, C. A.; TOGNOLO, A. M.; RIBEIRO, O. B.; SOLIS, D. R. Occurrence of Microcerella halli (Engel) (Diptera, Sarcophagidae) in snake carrion in southeastern Brazil. Revista Brasileira de Entomologia, v. 53, p. 318–320, 2009. MOURA, M. O.; CARVALHO, C. J. B.; MONTEIRO-FILHO, E. L. A. A Preliminary Analysis of Insects of Medico-legal Importance in Curitiba, State of Paraná. Memórias do Instituto Oswaldo Cruz, v. 92, p. 269-274, 1997. MPURU, S.; BLOMQUIST, G. J.; SCHAL, C.; ROUX, M.; KUENZLI, M.; DUSTICIER, G.; CLÉMENT, J. L.; BAGNÈRES, A. G. Effect of age and sex on the production of internal and external hydrocarbons and pheromones in the housefly, Musca domestica. Insect Biochemistry and Molecular Biology, v. 31, p. 139–155, 2001. MULIERI, P. R.; MELLO-PATIU, C. A. Revision of the Neotropical genus Malacophagomyia (Diptera: Sarcophagidae) with description of a new species. Zootaxa, v. 3736, p. 368, 2013. MULLEN, G. R.; TRAUTH, S. E.; SELLERS, J. C. Association of a miltogrammine fly, Eumacronychia nigricornis Allen (Diptera: Sarcophagidae), with the brood burrows of Sceloporus undulates (Latrielle) (Reptilia: Lacertillia). Journal of Georgia Entomological Society, v. 19, p. 1-6, 1984. NELSON, D. R .; DILLWITH, J. W.; BLOMQUIST, G. J. Cuticular hydrocarbons of the house fly, Musca domestica. Insect Biochemistry, v. 11, p. 187–197, 1981. NELSON, L. J.; COOL, L. G.; FORSCHLER, B. T.; HAVERTY, M. I. Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in North America. Journal of Chemical Ecology, v. 27, p. 1449-1479, 2001. NIRMALA, X.; HYPSA, V.; ZUROVEC, M. Molecular phylogeny of Calyptratae (Diptera: Brachycera): the evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. Insect Molecular Biology, v. 10, p. 475–485, 2001. 93 OLIVEIRA-COSTA, J. Entomologia forense: quando os insetos são vestígios. 3 ed. São Paulo: Editora Millenium, 2011. 502p. OLIVEIRA-COSTA, J. A.; LAMEGO, C. M. D.; COURI, M. S.; MELLO-PATIU, C. A. Differential Diptera succession patterns onto partially burned and unburned pig carrion in southeastern Brazil. Brazilian Journal of Biology, v. 74, p. 870-876, 2014. OLIVEIRA-COSTA, J.; MELLO-PATIU, C. A.; LOPES, S. M. Dipteros muscoides associados com cadáveres humanos na cena da morte no estado do Rio de Janeiro. Boletim do Museu Nacional, v. 464, p. 1-6, 2001. PAGE, M.; NELSON, L. J.; BLOMQUIST, G. J.; SEYBOLD, S. J. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips sp.) in the grandicolis subgeneric group. Journal of Chemical Ecology, v. 23, p. 1053-1099, 1997. PAPE, T. Catalogue of the Sarcophagidae of the world (Insecta: Diptera). Memoirs of Entomology, International, 1996. 558 p. PAPE, T.; BLAGODEROV, V.; MOSTOVSKI, M.B. Order Diptera Linnaeus, 1758. In: ZHANG, Z. Q. (Org.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa, 2011, p. 3148-3237. PECHAL, J. L.; MOORE, H.; DRIJFHOUT, F.; BENBOW, M. E. Hydrocarbon profiles throughout adult Calliphoridae aging: A promising tool for forensic entomology. Forensic Science International, v. 245, p. 65-71, 2014. PHILLIPS, A.; MILLIGAN, P. Cuticular hydrocarbons distinguish sibling species of vectors. Parasitol Today, v. 2, p. 180-181, 1986. PICKENS, L. G. The life history and predatory efficiency of Ravinia lherminieri (Diptera: Sarcophagidae) on the face fly (Diptera: Muscidae). Canadian Entomology, v. 113, p. 523-526, 1981. POMONIS, J. G. Cuticular hydrocarbons of the screwworm, Cochliomyia hominivorax (Diptera: Calliphoridae) Isolation, identification and quantification as a function of age, sex and irradiation. Journal of Chemical Ecology, v. 15, p. 2301-2317, 1989. PUJOL-LUZ, J. R.; ARANTESI, L. C.; CONSTANTINO, R. Cem anos da Entomologia Forense no Brasil (1908-2008). Revista Brasileira de Entomologia, v. 52, 2008. 94 ROQUETTE-PINTO, E. Nota sobre a fauna cadavérica do Rio de Janeiro. A Tribuna Médica, v. 21, p. 413–417, 1908. ROSA, T. A.; BABATA, M. L. Y.; SOUZA, C. M.; SOUSA, D.; MELLO-PATIU, C. A.; VAZDE- MELLO, F. Z.; MENDES, J. Arthropods associated with pig carrion in two vegetation profiles of Cerrado in the State of Minas Gerais, Brazil. Revista Brasileira de Entomologia, v. 55, p. 424–434, 2011. ROSS, K. G.; MEER, R. K. V.; FLETCHER, D. J. C.; VARGO, E. L. Biochemical phenotypic and genetic studies of two introduced fire ants and their hybrid (Hymenoptera: Formicidae). Evolution, v. 41, 280–293, 1987. ROUAULT, J. D.; MARICAN, C.; WICKER-THOMAS, C.; JALLON, J. M. Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; a model for HC evolution in D. melanogaster and D. simulans. Genetica, v. 120, p. 195–212, 2004. ROUX, O.; GERS, C.; LEGAL, L. When, during ontogeny, waxes in the blowfly (Calliphoridae) cuticle can act as phylogenetic markers. Biochemical Systematics and Ecology, v. 34, 406-416, 2006. ROUX O.; GERS, C.; LEGAL, L. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis, Medical and Veterinary Entomology. v. 22, p. 309–317, 2008. RUNDEL, H. D., CHENOWETH, S. F.; DOUGHTY, P.; BLOWS, M. W. Divergent Selection and the Evolution of Signal Traits and Mating Preferences. PLoS Biology, v. 3, p. 1988-1995, 2005. SITES, J. W.; CRANDALL, K. A. Testing species boundaries in biodiversity studies. Conservation Biology, v. 11, p. 1289–1297, 1997. SLEDGE, M. F.; TRINCA, I.; MASSOLO, A.; BOSCARO, F.; TURILLAZZI, S. Variation in cuticular hydrocarbon signatures, hormonal correlates and establishment of reproductive dominance in a polistine wasp. Journal of Insect Physiology, v. 50, p. 73-83, 2004. SMITH, K. G. V. A manual of forensic entomology. British Museum (Natural History), London & Cornell University Press, 1986. 205 pp. 95 SOUZA, A. M.; LINHARES, A. X. Diptera and coleoptera of potential forensic importance in southeastern Brazil: relative abundance and seasonality. Medical and Veterinary Entomolgy, v. 11, p. 8-12, , 1997. SOUZA, A. S. B.; KIRST1, F. D.; KRÜGER, R. F. Insects of forensic importance from Rio Grande do Sul state in southern Brazil. Revista Brasileira de Entomologia, v. 52, p. 641-646, 2008. STAMPER, T.; DAHLEM, G. A.; COOKMAN, C.; DEBRY, R. W. Phylogenetic relationships of flesh flies in the subfamily Sarcophaginae based on three mtDNA fragments (Diptera: Sarcophagidae). Systematic Entomology, v. 38, p. 35–44, 2013. TOOLSON, E. C. Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. Journal of Experimental Zoology, v. 222, p. 249– 253, 1982. TRABALON, M.; CAMPAN, M.; CLEMENT, J.L.; LANGE, C.; MIQUEL, M.T. Cuticular hydrocarbons of Calliphora vomitoria (Diptera): Relation to age and sex. General and Comparative Endocrinology, v. 85, p. 208–216, 1992. UEBEL, E. C.; SONNET, P. E.; MILLER, R. W.; BEROZA, M. Sex pheromone of the face fly Musca autumnalis (Diptera: Muscidae). Journal of Chemical Ecology, v. 1, p. 195–202, 1975. URECH, R.; BROWN, G. W.; MOORE, C. J.; GREEN, P. E. Cuticular hydrocarbons of buffalo fly, Haematobia exigua, and chemotaxonomic differentiation from horn fly, H. irritans. Journal of Chemical Ecology, v. 31, p. 2451–2461, 2005. VAIRO, K. P.; MELLO-PATIU, C. A.; CARVALHO, C. J. B. Pictorial identification key for species of Sarcophagidae (Diptera) of potential forensic importance in southern Brazil. Revista Brasileira de Entomologia, v. 55, p. 333–347, 2011. VAIRO, K. P.; MOURA, M. O.; URURAHY-RODRIGUES, A.; MELLO-PATIU, C. A. Sarcophagidae (Diptera) with forensic potential in Amazonas: a pictorial key. Tropical Zoology, v. 27, p. 140-152, 2014. VANÍČKOVÁ, L.; SVATOŠ, A.; KROISS, J.; KALTENPOTH, M.; NASCIMENTO, R.R.; HOSKOVEC, M.; BŘÍZOVÁ, R.; KALINOVÁ, B. Cuticular hydrocarbons of the South American fruit fly Anastrepha fraterculus: variability with sex and age. Journal of Chemical Ecology, v. 38, p. 1133-42, 2012. 96 VASCONCELOS, S. D.; ARAUJO, M. C. S. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: state of the art and challenges for the Forensic Entomologist. Revista Brasileira de Entomologia, v. 56, p. 7–14, 2012. WAGNER, D.; TISSOT, M.; GORDON, D. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. Journal of Chemical Ecology, v. 27, p. 1805-1819, 2001. WARTHEN, J. D. J.; UEBEL, E. C. Comparison of the unsaturated cuticular hydrocarbons of male and female house crickets, Acheta domesticus (L.) (Orthoptera: Gryllidae). Insect Biochemistry, v. 10, p. 435–439, 1980. WINSTON, J. E. Describing Species: Practical taxonomic procedure for biologists. New York : Columbia University Press, 1978. 518 p. WIGGLESWORTH, V. B. The physiology of the cuticle and of ecdysis in Rhodnius prolixus (Triatomidae, Hemiptera); with special reference to the function of the oenocytes and of the dermal glands. Royal Microscopical Society, v. 76, p. 269–318, 1933. XU, H.; YE, GY.; XU, Y.; HU, C.; ZHU, GH. Age-dependent changes in cuticular hydrocarbons of larvae in Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). Forensic Science International, v. 242, p. 236-41, 2014. YE, G.; LI, K.; ZHU, J.; ZHU, G.; HU, C. Cuticular hydrocarbon composition in pupal exuviae for taxonomic differentiation of six necrophagous flies. Journal of Medical Entomology, v. 44, p. 450-456, 2007. ZHU, G. H.; YE, G. Y.; HU, C.; XU, X. H.; LI, K. Development changes of cuticular hydrocarbons in Chrysomya rufifacies larvae: potential for determining larval age, Medical and Veterinary Entomology, v. 20, p. 438–44, 2006. ZHU, G. H.; XU, X. H.; YU, X. J.; ZHANG, Y.; WANG, J. F. Puparial case hydrocarbons of Chrysomya megacephala as an indicator of the postmortem interval. Forensic Science International, v. 169, p. 1-5, 2007.por
dc.rightsAcesso Abertopor
dc.subjectCromatografia Gasosapor
dc.subjectEpicutículapor
dc.subjectEntomologia Forensepor
dc.subjectGas Chromatographyeng
dc.subjectEpicuticleeng
dc.subjectForensic Entomologyeng
dc.subject.cnpqBiologia Geralpor
dc.titleQuimiotaxonomia de insetos necrófagos Calliphoridae, Muscidae, Sarcophagidae e Stratiomyidae (Diptera) de potencial forense utilizando perfis de hidrocarbonetos cuticularespor
dc.title.alternativeChemotaxonomy of necrophagous insects Calliphoridae, Muscidae, Sarcophagidae and Stratiomyidae (Diptera) of forensic potential using cuticular hydrocarbon profiles.eng
dc.typeTesepor
Appears in Collections:Doutorado em Biologia Animal

Files in This Item:
File Description SizeFormat 
2015 - Rodrigo Rocha Barbosa.pdf2015 - Rodrigo Rocha Barbosa2.29 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.