???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/2996
Full metadata record
DC FieldValueLanguage
dc.creatorGôlo, Patrícia Silva-
dc.creator.Latteshttp://lattes.cnpq.br/3935275742919097por
dc.contributor.advisor1Bittencourt, Vânia Rita Elias Pinheiro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3888832724995864por
dc.contributor.advisor-co1Fernandes, Éverton Kort Kamp-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2135541732341157por
dc.contributor.advisor-co2Roberts, Donald Wilson-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/6612704411236706por
dc.contributor.referee1Angelo, Isabele da Costa-
dc.contributor.referee2Coelho, Irene da Silva-
dc.contributor.referee3Reck Júnior, José-
dc.contributor.referee4Silva, Walter Orlando Beys da-
dc.date.accessioned2019-10-24T16:10:25Z-
dc.date.issued2014-07-22-
dc.identifier.citationGôlo, Patrícia Silva. Metarhizium spp.: caracterização de isolados com potencial para biocontrole de pragas.. 2014. [116 f.]. Dissertação( Programa de Pós-Graduação em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro, [Seropédica-RJ] .por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/2996-
dc.description.resumoMetarhizium anisopliae senso latu (s.l.) tem sido amplamente utilizado em programas de controle de insetos e apresenta resultados promissores em testes contra carrapatos, especialmente Rhipicephalus microplus. Os níveis de virulência de diferentes espécies e isolados de M. anisopliae s.l. podem estar relacionados com a produção de enzimas, produção de metabolitos secundários, e tolerância aos efeitos abióticos como altas temperaturas e intensa radiação solar. Dessa maneira, a presente tese objetivou: 1) determinar, em 20 isolados fúngicos de Metarhizium, os níveis de tolerância à radiação UV-B quando estes foram suspensos em água ou formulados com óleo; 2) avaliar os níveis de produção in vitro de destruxinas nestes mesmos isolados fúngicos e a presença de destruxinas em larvas de Galleria mellonella utilizando dois isolados fúngicos de espécies diferentes; 3) verificar a virulência contra larvas de R. microplus e larvas de insetos (G. mellonella e Tenebrio molitor) desses mesmos isolados; 4) correlacionar a expressão de pr1 e a virulência de Metarhizium anisopliae s.l. para R. microplus; 5) avaliar a resposta no perfil proteico de ovos de R. microplus após tratamento fúngico das fêmeas; e 6) quantificar níveis de produção de destruxina in planta [Vigna unguiculata (feijões) e Cucumis sativus (pepinos)]. As formulações a base de óleo mineral (10%) contendo conídios de diferentes espécies e isolados de Metarhizium claramente protegeram o fungo do efeito causado pela exposição à radiação UV-B (i.e., atraso na germinação), o que sugere que a adição de óleo mineral às suspensões fúngicas pode conferir melhor desempenho de fungos entomopatogênicos quando aplicados a campo. Quando os resultados obtidos com a produção in vitro de destruxinas dos isolados de Metarhizium spp. foram correlacionados com os seus potenciais virulentos, observou-se que a presença desses metabólitos secundários nas culturas fúngicas não está relacionada aos níveis ou à velocidade de mortalidade dos insetos estudados. Destruxinas não foram detectadas em larvas de G. mellonella. Os valores elevados de expressão de pr1 nos conídios produzidos em carrapatos não induziram níveis de mortalidade larval maiores do que conídios produzidos em meio artificial. Cinquenta e duas proteínas foram identificados nos ovos de R. microplus, dentre essas, alguns inibidores de serino proteases (Serpinas) estão possivelmente relacionados a uma resposta adaptativa, já que foram identificados somente em ovos do grupo de fêmeas exposto ao fungo. Houve detecção de destruxinas quando feijões foram endofiticamente colonizados por M. robertsii. Essa característica pode ser significantemente positiva para o seu uso de fungos contra pestes da agricultura, caracterizando-se como uma nova e promissora abordagem no controle biológico de artrópodes-pestes, isto é, o uso de fungos artropodopatogênicos produzidos in planta para modificar negativamente o comportamento de pestes agrícolas. O presente estudo foi o primeiro relato da detecção de destruxinas em plantas colonizadas por M. robertsii e descreve, também pela primeira vez, a positividade na colonização de M. acridum em plantas (feijão cowpea e pepino), após inoculação em sementes, e a colonização endofítica de M. brunneum em feijões após aplicação foliar.por
dc.description.abstractMetarhizium anisopliae senso latu (s.l.) has been widely used in insect control programs and shows promising results in tests against ticks, especially Rhipicephalus microplus. Virulence levels of different species of M. anisopliae s.l. may be related to the production of enzymes, secondary metabolite and tolerance to abiotic effects such as high temperatures and intense solar irradiation. Accordingly, the present thesis aimed: 1) determine UV-B tolerance levels of 20 different Metarhizium spp. isolates in aqueous or oil-based formulation; 2) assess levels of destruxins production in vitro by the same fungal isolates and in vivo production in Galleria mellonella larvae using two fungal isolates from different species; 3) verify virulence against Rhipicephalus microplus larvae and insect larvae (G. mellonella and Tenebrio molitor) when the same isolates were suspended in water; 4) correlate the expression of pr1 and Metarhizium anisopliae sensu lato virulence for R. microplus larvae; 5) evaluate the response in the protein profile of R. microplus eggs after fungal treatment of females; and 6) quantify levels of destruxins production in planta [Vigna unguiculata (cowpea beans) and Cucumis sativus (cucumbers)]. Formulations based on 10% mineral oil containing conidia of different Metarhizium isolates clearly protected conidia from the effect caused by UV-B radiation (i.e., delayed germination), suggesting that the addition of mineral oil to fungal suspensions may improve their performance under field conditions. Comparisons between the results obtained with in vitro destruxins production and fungal virulence, showed that the presence or absence of these secondary metabolites in fungal cultures was not related to the level or rate of arthropod mortality. Destruxins were not detected in G. mellonella larvae, suggesting that these insect larvae detoxified quickly the produced compounds. The high values of Pr1 in conidia produced on ticks did not induce higher levels of larval mortality in comparison with conidia produced on artificial media. Fifty-two proteins were identified in R. microplus eggs, among these, some inhibitors of serine proteases (Serpins) are possibly present as an adaptive tick response to the fungus, since they were only identified in the group of eggs from females exposed to the fungus. Destruxins were detected when beans were endophytic colonized by M. robertsii. This finding might be significantly positive for fungal use to control agriculture pests, representing a promising new approach for biological control of arthropod pests, i.e., the use of arthropodpathogenic fungi grown in planta to adversely modify the behavior of agricultural pests. This study was the first report of destruxins detection in plants colonized by M. robertsii and also describes, for the first time, the positive endophytic colonization of M. acridum in plants (cowpea beans and cucumber after seed inoculation), and colonization of M. brunneum in cowpea beans after folear applicationeng
dc.description.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2019-10-24T16:10:25Z No. of bitstreams: 1 2014 - Patrícia Silva Gôlo.pdf: 4030381 bytes, checksum: 82161fc8dc0d87202b04244bb618e5f3 (MD5)eng
dc.description.provenanceMade available in DSpace on 2019-10-24T16:10:25Z (GMT). No. of bitstreams: 1 2014 - Patrícia Silva Gôlo.pdf: 4030381 bytes, checksum: 82161fc8dc0d87202b04244bb618e5f3 (MD5) Previous issue date: 2014-07-22eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/11061/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/16554/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/22870/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/29248/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/35622/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/42020/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/48400/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/54850/2014%20-%20Patr%c3%adcia%20Silva%20G%c3%b4lo.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Veterináriapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Ciências Veterináriaspor
dc.relation.referencesALVES, R.T.; BATEMAN, R.P.; PRIOR, C.; LEATHER, S.R. Effects of simulated solar radiation on conidial germination of Metarhizium anisopliae in different formulations. Crop Protection, v.17, p.675-679, 1998. ALVES, S.B. Controle Microbiano de Insetos. 2ª ed. Piracicaba: FEALQ, 1998. 1163p. AMIRI-BESHELI, B.; KHAMBAY, B.; CAMERON, S.; DEADMAN, M.L.; BUTT, T.M. Inter- and intra-specific variation in destruxin production by insect pathogenic Metarhizium spp., and its significance to pathogenesis. Mycology Research, v. 104, p. 447-452, 2000. ANGELO, I. C., FERNANDES, E. K. K., BAHIENSE, T. C., PERINOTTO, W. M. S., MORAES, A. P. R., TERRA, A. L. M., BITTENCOURT, V. R. E. P. Efficiency of 51 Lecanicillium lecanii to control the tick Rhipicephalus microplus. Veterinary Parasitology. v. 172, p. 317-322, 2010. AYRES, P.G.; GUNASEKERA, T.S.; RASANAYAGAM, M.S.; PAUL, N.D. Effects of UV- B radiation (280-320 nm) on foliar sapritrophs and pathogens. In: FRANKLAND, J.C.; MAGAN, N.; GADD, G.M. Fungi and Environmental Change. Paris: Cambridge University Press, 1996. p.33-50. BAHIENSE, T.C.; FERNANDES, E.K.K.; ANGELO, I.C.; PERINOTTO, W.M.S.; BITTENCOURT, V.R.E.P. Avaliação do potencial de controle biológico de Metarhizium anisopliae sobre Boophilus microplus em teste de estábulo. Revista Brasileira de Parasitologia Veterinária, v. 16, n. 4, 243-245, 2007. BAILEY, A.M.; KERSHAW, M.J.; HUNT, B.A.; PATERSON, I.C.; CHARNLEY, A.K.; REYNOLDS, S.E.; CLARKSON, J.M. Cloning and sequence analysis of an intron-containing domain from a peptide synthetase- encoding gene of the entomopathogenic fungus Metarhizium anisopliae. Gene, v. 173, p. 195-197, 1996. BALASHOV, Y.S. A translation of bloodsucking ticks (Ixodoidea) ¾ Vectors of diseases of man and animals. Misc Publ Entomol, v.8, n.5, p.159-376, 1972. BARROS, B. H. R.; DA SILVA, S. H.; MARQUES, E. R.; ROSA, J. C.; YATSUDA, A. P.; ROBERTS, D. W.; BRAGA, G. U. L. A proteomic approach to identifying proteins differentially expressed in conidia and mycelium of the entomopathogenic fungus Metarhizium anisopliae. Fungal Biology, v. 114, p. 572–579, 2010. BISCHOFF, J.F.; REHNER, S.A.; HUMBER, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v.101, n. 4, p.512-530, 2009. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Ação do fungo Metarhizium anisopliae sobre a fase não parasitária do ciclo biológico de Boophilus microplus. Revista Universidade Rural, Séries Ciências da Vida, v. 16, p. 49-55, 1994. BRAGA, G.U.L.; FLINT, S.D.; MESSIAS, C.L.; ANDERSON, A.J.; ROBERTS, D.W. Effect of UV-B on conidia and germlings of the entomopathogenic hyphomycete Metarhizium anisopliae. Mycological Research, v. 105, p. 874-882, 2001a. BRAGA, G.U.L.; FLINT, S.D.; MILLER, C.D.; ANDERSON, A.J.; ROBERTS, D.W. Both solar UVA and UVB radiation impair conidial culturability and delay germination in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology, v. 74, p. 734-739, 2001b. BRAGA, G.U.L.; RANGEL, D.E.N.; FLINT, S.D.; MILLER, C.D.; ANDERSON, A.J.; ROBERTS, D.W. Damage and recovery from UV-B exposure in conidia of the entomopathogens Verticillium lecanii and Aphanocladium album. Mycologia, v. 94, p. 912- 920, 2002. 52 BRAGA G.U.L.; RANGEL, D.E.N.; FLINT, S.F.; ANDERSON, A.J.; ROBERTS, D.W. Conidial pigmentation is important to tolerance against solar-simulated radiation in the entomopathogenic fungus Metarhizium anisopliae. Photochemistry and Photobiology, v. 82, p. 418-422, 2006. CAMARGO, M.G.; GOLO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; SA, F.A.; QUINELATO, S. BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140-147, 2012. CERENIUS, L.; THORNQVIST, P.; VEY, A.; JOHANSSON, M.W.; SODERHALL, K. The effect of the fungal toxin destruxins E on isolated crayfish haemocytes. Journal of Insect Physiology, v. 36, p. 785-789, 1990. COSTA, G.L.; SARQUIS, M.I.M.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Isolation of Beauveria bassiana and Metarhizium anisopliae var. anisopliae from Boophilus microplus tick (Canestrini, 1887), in Rio de Janeiro State, Brazil. Mycopathologia, v. 154, n. 4, p. 207-209, 2002. D’ENFERT, C. Fungal spore germination: Insights from the molecular genetics of Aspergillus nidulans and Neurospora crassa. Fungal Genetics and Biology, v. 21, p. 163–172, 1997. DONZELLI, B.G.G.; KRASNOFF, S.B.; SUN-MOON, Y.; CHURCHILL, A.C.L.; GIBSON, D.M. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Current Genetics, v. 58, p. 105-116, 2012. FARGUES, J.; GOETTEL, M.S.; SMITS, N.; OUEDRAOGO, A.; VIDAL, C.; LACEY, L.A.; LOMER, C.J.; ROUGIER, M. Variability in susceptibility to simulated sunlight of conidia among isolates of entomopathogenic Hyphomycetes. Mycopathologia, v. 135, p. 171–181, 1996. FARIA, M.R.; WRAIGHT, S.P. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, v. 43, p. 237–256, 2007. FERNANDES, E.K.K. Caracterização e seleção de isolados de Beauveria bassiana para o controle microbiano do carrapato Boophilus microplus. 2007. 130p Tese (Doutorado em Ciências Veterinárias, Parasitologia Veterinária). Instituto de Veterinária, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2007. FERNANDES, E. K. K.; RANGEL, D. E. N.; MORAES, A. M. L.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Journal of Invertebrate Pathology, v. 96, p. 237–243, 2007. 53 FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P. Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, v. 46, n. 1-4, p.71-93, 2008. FERNANDES, É.K.K.; KEYSER, C.A.; CHONG, J.P.; RANGEL, D.E.N.; MILLER, M.P.; ROBERTS, D.W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v.108, n. 1, p.115-128, 2010. FERNANDES, É.K.K.; ANGELO, I.C.; RANGEL, D.E.N.; BAHIENSE, T.C.; MORAES, A.M.L.; ROBERTS, D.W.; BITTENCOURT, V.R.E.P. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology, v. 182, p. 307-318, 2011. FINNEY, D.S. Probit analysis. Cambridge: University Press, 1971. 333p. GAO, Q.; JIN, K; YING, S.-H.; ZHANG, Y.; XIAO, G.; SHANG, Y.; DUAN, Z.; HU, X.; XIE, X.-Q.; ZHOU, G.; PENG, G.; LUO, Z.; HUANG, W.; WANG, B.; FANG, W.; WANG, S.; ZHONG, Y.; MA, L.-J.; ST LEGER, R.J.; ZHAO, G.-P.; PEI, Y.; FENG, M.G.; XIA, Y.; WANG, C. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics v. 7, p. e1001264, 2011. HAN, P.; JIN, F.; DONG, X.; FAN, J.; QIU, B.; REN, S. Transcript and protein analysis of the destruxin A-induced response in larvae of Plutella xylostella. Plos One, v. 8, p. e60771-e60781, 2013. HUXHAM, I.M.; LACKIE, A.M.; MCCORKINDALE, N.J. Inhibitory effects of cyclodepsipeptides, destruxins, from the fungus Metarhizium anisopliae, on cellular immunity in insects. Journal of Insect Physiology, v. 35, p. 97-105, 1989. INGLIS, G.D.; GOETTEL, M.S.; JOHNSON, D.L. Influence of ultraviolet-light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control, v.5, p.581-590, 1995. JAMES, P.J.; KERSHAW, M.J.; REYNOLDS, S.E.; CHARLEY, A.K. Inhibition of desert locust (Schistocera gregaria) Malpighian tubule fluid secretion by destruxins, cyclic peptide toxins from the insect pathogenic Metarhizium anisopliae. Journal of Insect Phisiology, v. 39, p. 797-804, 1993. JEGOROV, A.; MATHA, V.; HRADEC, H. Detoxification of destruxins in Galleria mellonella L. larvae. Comparative Biochemistry and Physiology, v. 103C, p. 227–229, 1992. 54 KERSHAW, M.J.; MOORHOUSE, E.R.; BATEMAN, R.; REYNOLDS, S.E.; CHARNLEY, A.K. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insects. Journal of Invertebrate Pathology, v. 74, p. 213-223, 1999. KODARIA, Y. Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agricultural and Biological Chemistry, v. 25, p. 261-262, 1961. KODAIRA Y. Studies on the new toxic substances to insects, destruxin A and B, produced by Oospora destructor. Agricultural and Biological Chemistry, v. 26, p. 39-62, 1962. KRASNOFF, S.B.; SOMMERS, C.H.; MOON, Y-S.; DONZELLI, B.G.G.; VANDENBERG, J.D.; CHURCHILL, A.C.L., GIBSON, D.M. Production of mutagenic metabolites by Metarhizium anisopliae. Journal of Agriculture Food and Chemistry, v. 54, p. 7083-7088, 2006. LIU, B-L.; TZENG, Y-M. Development and applications of destruxins: a review. Biothecnology Advances, v. 30, p. 1242-1254, 2012. MAGOON, J.; MESSING-AL-AIDROOS, K. Epistatic relationships and linkage among colour markers of the imperfect entomo-pathogenic fungus Metarhizium anisopliae. Canediam Journal of Genetic Cytology, v. 28, p. 96-100, 1985. MOON, Y-S.; DONZELLI, B.G.G.; KRASNOFF, S.B.; McLANE, H.; GRIGGS, M.H.; COOKE, P.; VANDENBERG, J.D.; GIBSON, D.M.; CHURCHILL, A.C.L. Agrobacterium-Mediated Disruption of a Nonribosomal Peptide Synthetase Gene in the Invertebrate Pathogen Metarhizium anisopliae Reveals a Peptide Spore Factor. Applied and Environmental Microbiology, v. 74, p. 4366-4380, 2008. MOORE, Ultra-violet radiation damage to Metarhizium flavoviride conidia and the protection given by vegetable and mineral oils and chemical sunscreens, Annals of Applied Biology, v. 122, p. 605-616, 1993. MUROI, M.; SHIRAGAMI, N.; TAKATSUKI, A. Destruxin B, a specific and readily reversible inhibitor of vacuolar-type H+-translocating ATPase. Biochemical and Biophysical Research Communication, v. 205, p. 1358-1365, 1994. NOVENTA JORDÃO, M.A.; COUTO, R.M.; GOLDMAN, M.H.S.; AGUIRRE, J.; CAPLAN, A.; TERENZI, H.F.; GOLDMAN, G.H. Catalse activity is necessary for heat- shock recovery in Aspergillus nidulans germilings. Microbiology, v.145, p.3229-3234, 1999. ODHIAMBO, T.R. Current themes in tropical science: physiology of ticks. Oxford : Pergamon, 1982. v.1, 508p. 55 PAL, S.; LEGER, R.J.S.; WU, L.P. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster. Journal of Biological Chemistry, v. 282, p. 8969-8977, 2007. QUAITE, F.E.; SUTHERLAND, B.M.; SUTHERLAND, J. C. Action spectrum for DNA damage in alfafa lowers predicted impact of ozone depletion. Nature, v. 358, 576–578, 1992. QUINELATO, S.; GOLO, P.S.; PERINOTTO, W.M.S.; SÁ, F.A.; CAMARGO, M.G.; ANGELO, I.C.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Veterinary Parasitology. v. 190, p. 556-565, 2012. QUIOT, J.M.; VEY, A.; VAGO, C. Depsipeptides from Metarhizium anisopliae. Phytochemistry, v. 20, p. 715-723, 1985. RANGEL, D.E.N.; BYTLER, M.J.; TORABINEJAD, J.; ANDERSON, A.J.; BRAGA, G.U.L.; DAY, A.W.; ROBERTS, D.W. Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Journal of Invertebrate Pathology, v.93, p.170-182, 2006. RANGEL, D.E.N.; ANDERSON, A.J.; ROBERT, D.W. Evaluating physical and nutritional stress during mycelial growth as inducers of tolerance to heat and UV-B radiation in Metarhizium anisopliae conidia. Mycological Research, v. 112, p. 1362-1372, 2008. REIS, R.C.S.; MELO, D.R.; SOUZA, E.J.; BITTENCOURT, V.R.E.P. Ação in vitro dos fungos Beauveria bassiana (Bals) Vuill e Metarhizium anisopliae (Metsch) Sorok sobre ninfas e adultos de Amblyomma cajennense (Fabricius, 1787) (Acari: Ixodidae). Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 53, n. 5, p. 544-547, 2001. ROBERTS, D.W. Toxins from the entomogenous fungu Metarrhizium anisopliae II. Symptoms and detection in moribund hosts. Journal of Invertebrate Pathology, v. 8, p. 222-227, 1966. ROBERTS, D.W.; FLINT, S.D. Tools of the UV trade: Light sources, filtering, measuring irradiance, and selecting biological weighting factors (action spectra). Proceedings of the International Colloquium on Insect Pathology and Microbial Control. EMBRAPA/Soja, Londrina, PR, Brazil. pp. 237-240, 2002. ROBERTS, D.W.; ST LEGER, R.J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Advances in applied microbiology, v. 54, p. 1-70, 2004. SAMPAIO, I.B.M. Estatística Aplicada à Experimentação Animal. 3. ed -reimpressão. Belo Horizonte: FEPMVZ- Editora, 2010. 264p. ISBN 85-87144-07-3. 56 SAMUELS, R.I.; CHARNLEY, A.K.; REYNOLDS, S.E. 1988a. The role of destruxins in the pathogenicity of 3 strains of Metarrhizium anisopliae for the tobacco hornworm ManducaSexta. Mycopathology, v. 104, p. 51-58, 1988a. SAMUELS, R.I.; REYNOLDS, S.E.; CHARNLEY, A.K. Calcium channel activation of insect muscle by destruxins, insecticidal compounds produced by the entomopathogenic fungus Metarrhizium anisopliae. Comparative Biochemistry and Physiology, v. 90C, p. 403-412, 1988b. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, n. 7, p. 1267-1274, 2010. ST. LEGER, R.J.; BUTT, T.M.; GOETTEL, M.S.; STAPLES, R.C.; ROBERTS, D.W. (1989) Production in vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, v.13, p. 274-288, 1989. STEINHAUS, E.A. Disease in a minor chord. Ohio State University Press, Columbus, Ohio, 1975. 488p. ISBN 10: 0814202187. SUZUKI, A.; KAWAKAMI, K.; TAMURA, S.; (1971) Detection of destruxins in silkworm larvae infected with Metarhizium anisopliae. Agriculural and Biological Chemistry, v. 35, p. 1641-1643, 1971. TEUTSCHBEIN, J.; ALBRECHT, D.; POTSCH, M.; GUTHKE, R.; AIMANIANDA, V.; CLAVAUD, C.; LATGE, J.P.; BRAKHAGE, A.A.; KNIEMEYER, O. Proteome profiling and functional classification of intracellular proteins from conidia of the human-pathogenic fungus Aspergillus fumigatus. Journal of Proteome Research, v. 9, p. 3427–3442, 2010. TEVINI, M. Molecular biological effects of ultraviolet radiation. In UV-B radiation and ozone depletion: Effects on humans, animals, plants microorganisms and materials. M. Tevini ed. Lews Publishers, Boca Raton, Florida, 1993, pp. 1-15. TULLOCH, M. The genus Metarhizium. Transactions of British Mycology Society, v. 66, p. 407-411, 1976. VEY, A.; MATHA, V.; DUMAS, C. Effects of the peptide mycotoxin destruxin E on insect haemocytes and on dynamics and efficiency of the multicellular immune reaction. Journal of Invertebrate Pathology, v. 80, p. 177-187, 2002. VILCINSKAS, A.; MATHA, V.; GÖTZ, P. Inhibition of phagocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. Journal of Insect Physiology, v. 43, p. 475-483, 1997. 57 WANG, S.; FANG, W.; WANG, C.; ST LEGER, R.J. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLOS Pathogens, v. 7, e1002097, 2011. WANG, B.; KANG, Q.; LU, Y.; BAI, L.; WANG, C. Unveiling the biosynthetic puzzle of destruxins in Metarhizium species. Proceedings of the National Academy of Sciences of the United States of America, v. 109, p. 1287-1292, 2012. ZIMMERMANN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879-920, 2007. ALVES, S.B. 1998. Fungos entomopatogênicos. In: Alves, S.B. (Ed.), Controle microbiano de insetos. Fundação de Estudos Agrário Luiz de Queirós (FEALQ), Piracicaba, BR, pp. 289-382. ANGELO, I.C.; FERNANDES, E.K.K.; BAHIENSE, T.C.; PERINOTTO, W.M.S.; MORAES, A.P.R.; TERRA, A.L.M. Efficiency of Lecanicillium lecanii to control the tick Rhipicephalus microplus. Veterinary Parasitology, v. 172, p. 317-322, 2010. BISCHOFF, J.F.; REHNER, S.A.; HUMBER, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, p. 512-530, 2009. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Uso do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, no controle do carrapato Boophilus microplus (Canestrini, 1887). Arquivo da Universidade Rural do Rio de Janeiro, v. 15, p. 197-202, 1992. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Ação do fungo Metarhizium anisopliae sobre a fase não parasitária do ciclo biológico de Boophilus microplus. Revista Universidade Rural, Série Ciências da Vida, v. 16, p. 49-55, 1994. BITTENCOURT, V.R.E.P.; MASSARD, C.L.; LIMA, A.F. Dinâmica da infecção do fungo Metarhizium anisopliae (Metschnikoff, 1879) Sorokin, 1883, sobre o carrapato Boophilus microplus (Canestrini, 1887). Revista da Universidade Rural, Série Ciências da Vida, v. 17, p. 83-88, 1995. BITTENCOURT, V.R.E.P.; MASCARENHAS, A.G.; FACCINI, J.L.H. 1999. Mecanismo de infecção do fungo Metarhizium anisopliae no carrapato Boophilus microplus em condições experimentais. Ciência Rural, Santa Maria, v. 29, p. 351-354, 1999. CAMARGO, M.G.; GOLO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; SÁ, F.A.; QUINELATO, S.; BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140-147, 2012. CAMPOS, R.A.; ARRUDA, W.; BOLDO, J.T.; SILVA, M.V.; BARROS, N.M.; AZEVEDO, J.L.; SCHRANK, A.; VAINSTAIN, M.H. Boophilus microplus infection by Beauveria amorpha and Beauveria bassiana: SEM analysis and regulation of subtilizin-like proteases and chitinases. Current Microbiology, v. 50, p. 257-261, 2005. CASTRO, A.B.A.; BITTENCOURT, V.R.E.P.; DAEMON, E.; VIEGAS, E.C. Eficácia do fungo Metarhizium anisopliae sobre o carrapato Boophilus microplus em teste de estábulo. Revista Universidade Rural, Série Ciências da Vida, v. 19, p. 73-82, 1997. 69 CHANDLER, D.; DAVIDSON, G.; PELL, J.K.; BALL, B.V.; SHAW, K.; SUNDERLAND, K.D. Fungal biocontrol of Acari. Biocontrol Science and Technology, v. 10, p. 357-384, 2000. COSTA, G.L.; SARQUIS, M.I.M.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Isolation of Beauveria bassiana and Metarhizium anisopliae var. anisopliae from Boophilus microplus tick (Canestrini, 1887), in Rio de Janeiro State, Brazil. Mycopathology, v. 154, p. 207-209, 2002. DHAR, P.; KAUR, G. Cuticle-degrading proteases produced by Metarhizium anisopliae and their induction in different media. Indian Journal of Microbiology, v. 50, p. 449-455, 2010. FANG, W.; BIDOCHKA, M.J. Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR. Mycological Research, v. 110, p. 1165-1171, 2006. FARGUES, J.F.; ROBERT, P.H. Effects of passing through scarabeid hosts on virulence and host specificity of two strains of the entomopathogenic hyphomycete Metarhizium anisopliae. Canadian Journal of Microbiology, v. 29, p. 576-583, 1983. FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P. 2008. Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, v. 46, p. 71-93, 2008. FERNANDES, E.K.K.; KEYSER, C.A.; RANGEL, D.E.N.; FOSTER R.N.; ROBERTS, D.W. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, v. 54, p. 197-205, 2010. FERNANDES, É.K.K.; ANGELO, I.C.; RANGEL, D.E.N.; BAHIENSE, T. C.; MORAES, A.M.L.; ROBERTS, D.W.; BITTENCOURT, V.R.E.P. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus. Veterinary Parasitology, v. 182, p. 307-318, 2011. FERNANDES, E.K.K.; BITTENCOURT, V.R.E.P.; ROBERTS, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Experimental Parasitology, v. 130, p. 300-305, 2012. JOHNS, R.; SONENSHINE, D.E.; HYNES, W.L.. Control of bacterial infections in the hard tick Dermacentor variabilis (Acari: Ixodidae): evidence of antimicrobial proteins in tick hemolymph. Journal of Medical Entomology, v. 35, p. 458-464, 1998. KAWAKAMI, K.. On the changes of characteristics of the silkworm muscardines through successive cultures. Bulletin of the Sericultural Experiment Station, p. 83-99, 1960. 70 LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L., RANDALL, R.J. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, v. 193, p. 265-275, 1951. PERINOTTO, W.M.S.; TERRA, A.L.M.; ANGELO, I.C.; FERNANDES, E.K.K.; GOLO, P.S.; CAMARGO, M.G.; BITTENCOURT, V.R.E.P. Nomuraea rileyi as biological control agents of Rhipicephalus microplus tick. Parasitology Research, v. 111, p. 1743-1748, 2012. QUINELATO, S.; GOLO, P.S.; PERINOTTO, W.M.S.; SÁ, F.A.; CAMARGO, M.G.; ANGELO, I.C.; MORAES, A.M.L.; BITTENCOURT, V.R.E.P. Virulence potential of Metarhizium anisopliae s.l. isolates on Rhipicephalus (Boophilus) microplus larvae. Veterinary Parasitology, v. 190, p. 556-565, 2012. ROBERTS, D.W., ST. LEGER, R.J. Metarhizium spp., cosmopolitan insect pathogenic fungi: mycological aspects. Advanced and Applied Microbiology, v. 54, p. 1-70, 2004. SAMISH, M.; REHACEK, J. Pathogens and predators of ticks and their potential in biological control. Annual Review of Entomology, v. 44, p. 159-182, 1999. SAMISH, M.; GINSBERG, H.; GLASER, I. Biological control of ticks. Parasitology, v. 129, p. S389-S403, 2004. SAMPAIO, I.B.M., 2002. Estatística aplicada à experimentação animal. Fundação de Estudo e Pesquisa em Medicina Veterinária e Zootecnia, FEPMVZ-Editora, 2002, 265p. SANTI, L.; SILVA, O.B.; BERGER, M.; GUIMARÃES, J.A.; SCHRANK, A.; VAINSTEIN, M.H. Conidial surface proteins of Metarhizium anisopliae: source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, v. 55, p. 874-880, 2010. SASAN, R.K.; BIDOCHKA, M.J. The insect-pathogenic fungus Metarhizium robertsii (clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, v. 99, p. 101-107, 2012. SCHRANK, A.; VAINSTEIN, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, p. 1267-1274, 2010. SMALL, C.N.; BIDOCHKA, M.J. Up-regulation of Pr1, a subtilisin-like protease, during conidiation in the insect pathogen Metarhizium anisopliae. Mycology Research, v. 109, p. 307-313, 2005. ST LEGER, R.J.; CHARNLEY, A.K.; COOPER, R.M. Cuticle-degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle. Journal of Invertebrate Pathology, v. 48, p. 85-95, 1986. 71 ST LEGER, R.J.; DURRAND, P.K.; COOPER, R. M.; CHARNLEY, A.K. Regulation of production of proteolytic enzymes by the entomopathogenic fungus Metarhizium anisopliae. Archives of Microbiology, v. 150, p. 413-416, 1988. ST LEGER, R.J.; BUTT, T.M.; STAPLES, R.C.; ROBERTS, D.W. Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, v.13, p. 253-262, 1989. ST LEGER, R.J.; ROBERTS, D.W.; STAPLES, R.C. A model to explain differentiation of appressoria by germilings of Metarhizium anisopliae. Journal of Invertebrate Pathology, v. 57, p. 299-310, 1991a. ST LEGER, R.J.; GOETTEL, M.; ROBERTS, D.W.; STAPLES, R.C. Prepenetration events during infection of host cuticle by Metarhizium anisopliae. Journal of Invertebrate Pathology 58, 168-179, 1991b. THOMSEN, L.; EILENBERG, J.; ESBJERG, P. Effects of destruxins on Pieris brassicae and Agrotis segetum. In: Smits, P.H. (ed.) Insect Pathogens and Insect Parasitic Nematodes. IOBC Bulletin, v. 19, p. 190-195, 1996. TULLOCH, M. The genus Metarhizium. Transactions of the British Mycological Society, v. 66, p. 407-411, 1976. VANDESOMPELE, J.; DE PRETER, K.; PATTYN, F.; POPPE, B.; VAN ROY, N.; DE PAEPE, A.; SPELEMAN, F. Accurate normalization of realtime quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, v. 3, p. research0034.1-0034.11, 2002. WAGNER, B.L.; LEWS, L.C. Colonization of corn, Zea mays, by the entomopathogenic fungus Beauveria bassiana, Applied and Environmental Microbiology, v. 66, p. 3468-3473, 2000. WANG, S.; LECLERQUE, A.; PAVA-RIPOLL, M.; FANG, W.; ST. LEGER, R.J. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukariotic Cell, v. 8, p. 888-898, 2009. WYREBEK, M.; HUBER, C.; SASAN, R.K.; BIDOCHKA, M.J. Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology, v. 157, p. 2904-2911, 2011. ZIMMERMANN, G., 2007. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, p. 879-920, 2007. ALVES, S.B. Controle Microbiano de Insetos. 2ª ed. Piracicaba: FEALQ, 1998. 1163p. ANGELO, I.C.; GOLO, P.S.; CAMARGO, M.G.; KLUCK, G.E.G.; FOLY, E. BITTENCOURT, V.R.E.P. Haemolymph protein and lipid profile of Rhipicephalus (Boophilus) microplus infected by fungi. Transboundary and Emerging Diseases, v. 57, n. 1-2, p. 79-83, 2010. ANGELO, I.C. Avaliação dos perfis protéico e lipídico na resposta de Rhipicephalus microplus à infecção com fungos. 2011. 143p. Tese (Doutorado em Ciências Veterinárias, Parasitologia Animal)-Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011. ANGELO, I.C.; GOLO, P.S.; PERINOTTO, W.M.S.; CAMARGO, M.G.; COUTINHO-RODRIGUES, C.J.B.; CAMPANHON, I.B.; BRAZ, G.R.C.; SOARES, M.R.; FOLLY, E.; BITTENCOURT, V.R.E.P. Detection of serpins involved in celular imune response of Rhipicephalus microplus challenged with fungi. Biocontrol Science and Technology, v. 24, p. 351-360, 2014. ARRIETA, M.C.; LESKIW, B.K.; KAUFMAN, W.R. Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Experimental and Applied Acarology, v. 39, n. 3-4, p. 297-313, 2006. CAMARGO, M.G.; GOLO, P.S.; ANGELO, I.C.; PERINOTTO, W.M.S.; SÁ, F.A.; QUINELATO, S.; BITTENCOURT, V.R.E.P. Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, p. 140-147, 2012. 93 ESTEVES, E.; FOGAÇA, A. C.; MALDONADO, R.; SILVA, F.D.; MANSO, P.P.A.; PELAJO-MACHADO, M.; VALLE, D.; DAFFRE, S. Antimicrobial activity in the tick Rhipicephalus (Boophilus) microplus eggs: Cellular localization and temporal expression of microplusin during oogenesis and embryogenesis. Developmental & Comparative Immunology, v. 33, n. 8, p. 913-919, 2009. FOGACA, A.C.; LORENZINI, D.M.; KAKU, L.M.; ESTEVES, E.; BULET, P.; DAFFRE, S. Cysteine-rich antimicrobial peptides of three cattle tick Boophilus microplus: isolation, structural characterization and tissue expression profile. Developmental & Comparative Immunology, v. 28, n. 3, p. 191-200, 2004 GETTINS, P.G.W.; PATSON, P.A.; OLSON, S.T. Serpins: structure, function and biology. Ed Springer, New York. 1996. GETTINS, P.G. Serpin structure, mechanism, and function. Chemical Reviews, v. 102, p. 4751-4804, 2002. GORMAN MJ, PASKEWITZ SM. Serine proteases as mediators of mosquito immune responses. Insect Biochemistry and Molecular Biology, v. 31, p. 257–262, 2001. HAWKSWORTH, D.L. Micologist’s handbook. 2ªed. England, Kew Surrey: CAB Press, 1977. 231p. LOWRY, O.H.; ROSEBROUGH, N.J.; FARR, A.L.; RANDALL, R.J. Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, v. 193, p. 265-275, 1951. NAKAJIMA, Y.; VAN DER GOES VAN NATERS-YASUI, A.; TAYLOR, D.; YAMAKAWA, M. Antibacterial peptide defensin is involved in midgut immunity of the soft tick, Ornithodoros moubata. Insect Molecular Biology, v. 11, n. 6, p. 611-618, 2002. PERINOTTO, W.M.S.; ANGELO, I.C.; GOLO, P.S.; CAMARGO, M.G.; SA, F.A.; BITTENCOURT, V.R.E.P. Susceptibility of different populations of ticks to entomopathogenic fungi. Experimental Parasitology, v. 130, p. 257-260, 2012. PITALUGA, A.N.; BETEILLE, V.; LOBO, A.R.; ORTIGÃO-FARIAS, J.R.; DAVILA, A.M.R.; SILVA, A.A.; RAMALHO-ORTIGÃO, J.M.; TRAUB-CSEKO, Y.M.; EST sequencing of blood-fed and Leishmania-infected gut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Molecular and General Genetics, v. 282, p. 307-317, 2009. ROXSTROM-LINDQUIST, K.; TERENIUS, O.; FAYE, I. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Reports, v. 5, p. 207-212, 2004. SONENSHINE, D.E.; HYNES, W.L. Molecular characterization and related aspects of the innate immune response in ticks. Frontiers in Bioscience, v. 13, n. 18, p. 7046-7063, 2008. 94 TAYLOR, D. Innate Immunity in Ticks: A review. Journal of the Acarological Society of Japan, v. 15, n. 2, p. 109-127, 2006. TIRLONI, L. Identificação e caracterização de inibidores de serino-endopeptidases (serpinas) em Rhipicephalus (Boophilus) microplus 2012. 114p. Dissertação (Mesre em Ciências)-Universidade Federal do Rio Grande do Sul, Porto Alegre, 2012. TIRLONI, L.; SEIXAS, A.; MULENGA, A.; VAZ JR, I.S.; TERMIGNONI, C. A family of serine protease inhibitors (serpins) in the cattle tick Rhipicephalus (Boophilus) microplus. Experimental Parasitology, v.137, p. 25-34, 2014. TULLOCH, M. The genus Metarhizium. Transactions of the British Mycological Society v. 66, p. 407-411, 1976. AKUTSE, K.S.; MANIANIA, N.K.; FIABOE, K.K.M.; VAN DEN BERG, J.; EKESI, S. Endophytic colonization of Vicia faba and Phaseolus vulgaris (Fabaceae) by fungal pathogens and their effects on life history parameters of Liriomyza huidobrensis (Diptera: Agromyzidae). Fungal Ecology, v. 6, p. 293-301, 2013. AMIRI, B.; IBRAHIM, L.; BUTT, T.M. Antifeedant properties of destruxins and their potential use with the entomogenous fungus Metarhizium anisopliae for improved control of crucifer pests. Biocontrol Science and Technology, v. 9, p. 487-498. 1999. BEHIE, S.W.; ZELISKO, P.M.; BIDOCHKA, M.J. Endophytic Insect-Parasitic Fungi translocate nitrogen directly from insects to plants. Science, v. 336, p. 1576-1577, 2012. BILLS, G.F.; POLISHOOK, J.D. Microfungi from Carpinus caroliniana. Canadian Journal of Botany, v. 69, p. 1477-1482, 1991. BING, L.A.; LEWIS, L.C. Suppression of Ostrinia nubilalis (Hubner) (Lepdoptera: Pyralidae) by endophytic Beauveria bassiana (Balsamo) Vuillemin. Environmental Entomology, v. 20, p. 1207-1211, 1991. DONZELLI, B.G.G.; KRASNOFF, S.B.; SUN-MOON, Y.; CHURCHILL, A.C.L.; GIBSON, D.M. Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Current Genetics, v. 58, p. 105-116, 2012. FERNANDES, E.K.K.; KEYSER, C.A.; RANGEL, D.E.N.; FOSTER, R.N.; ROBERTS, D.W. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, v. 54, p. 197-205, 2010. GURULINGAPPA, P.; SWORD, G.A.; MURDOCH, G.; MCGEE P.A. Colonization of crop plants by fungal entomopathogens and their effect on two insect pests when in planta. Biological Control 55: 34-41. 2010. KERSHAW, M.J.; MOORHOUSE, E.R.; BATEMAN, R.; REYNOLDS, S.E.; CHARNLEY, A.K. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. Journal of Invertebrate Pathology, v.74, p. 213-223, 1999. 113 KODARIA, Y. Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor. Agricultural and Biological Chemistry, v. 25, p. 261-262, 1961. LIU, B-L; TZENG, Y-M. Development and applications of destruxins: a review. Biothecnology Advances, v. 30, p. 1242-1254, 2012. O’BRIEN, T.R. Metarhizium anisopliae’s persistence as a saprophyte, genetic basis of adaptation and role as a plant symbiont. Tese de doutorado, University of Maryland, 2008. PARSA, S.; ORTIZ, V.; VEGA, F.E. Establishing fungal entomopathogens as endophytes: towards endophytic biological control. Journal of Video Experiments, v. 74, e50360, 2013. PAVA-RIPOLL, M.; ANGELINI, C.; FANG, W.; WANG, S.; POSADA, F.; ST. LEGER, R. The rhizosphere-competent entomopathogen Metarhizium anisopliae expresses a specific subset of genes in plant root exudates. Microbiology, v. 157, p. 47-55, 2011. PEDRAS, M.S.; ZAHARIA, I.L.; GAI, Y.; ZHOU, Y.; WARD, D.E. In planta sequential hydroxylization and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming. Proceedings of National Academic of Science, USA, v. 98, p. 747-752, 2001. PEDRAS, M.S.C.; ZAHARIA, L.I.; WARD, D.E. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry, v. 59, p. 579-596, 2002. PETRINI, O. Endophytische pilze in Epiphytischen araceae, Bromeliaceae and Orchidiaceae. Sydowia, v. 34, p. 135-148, 1981. SAMPAIO, I.B.M. Estatística Aplicada à Experimentação Animal. Belo Horizonte: FEPMVZ-Editora, 2002. 265p. SASAN, R.K.; BIDOCHKA, M. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. American Journal of Botany, v. 99, p. 101-107, 2012. ST LEGER, R.J.; BUTT, T.M.; GOETTEL, M.S.; STAPLES, R.C.; ROBERTS, D.W. Production in vitro of appressoria by the enthomophatogenic fungus Metarhizium anisopliae. Experimental Mycology, v. 13, p. 274-288, 1989a. ST LEGER, R.J.; BUTT, T.M.; STAPLES, R.C.; ROBERTS, D.W. Synthesis of proteins including a cuticle-degrading protease during differentiation of the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, v. 13, p. 253-262, 1989b. ST LEGER, R.J.; ROBERTS, D.W.; STAPLES, R.C. A model to explain differentiation of appressoria by germlings of Metarhizium anisopliae. Journal of Invertebrate Pathology, v. 57, p. 299-310, 1991. ST LEGER, R.J. Studies on adaptations of Metarhizium anisopliae to life in the soil. Journal of invertebrate pathology, v. 98 p. 271-276, 2008. 114 TULLOCH, M. The genus Metarhizium. Transactions of British Mycology Society, v. 66, p. 407-411, 1976. VEGA, F.E.; POSADA, F.; AIME, M.C.; PAVA-RIPOLL, M.; INFANTE, F.; REHNER, S.A. Entomopathogenic fungal endophytes. Biological Control, v. 44, p. 72-82, 2008.por
dc.rightsAcesso Abertopor
dc.subjectfungos artropodopatogênicospor
dc.subjectradiação UV-Bpor
dc.subjectdestruxinaspor
dc.subjectPr1por
dc.subjectfungos endofíticospor
dc.subjectarthropodthogenic fungieng
dc.subjectUV-B irradiationeng
dc.subjectdestruxinspor
dc.subjectendophitic fungipor
dc.subject.cnpqMedicina Veterináriapor
dc.titleMetarhizium spp.: caracterização de isolados com potencial para biocontrole de pragas.por
dc.title.alternativeMetarhizium spp.: characterization of isolates with potential for biocontrol of pestseng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Ciências Veterinárias

Files in This Item:
File Description SizeFormat 
2014 - Patrícia Silva Gôlo.pdfPatrícia Silva Gôlo3.94 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.