???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/2485
Full metadata record
DC FieldValueLanguage
dc.creatorNeves, Leonardo Mitrano-
dc.creator.Latteshttp://lattes.cnpq.br/9490750242360258por
dc.contributor.advisor1Araújo, Francisco Gerson-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7898069293489622por
dc.contributor.referee1Francini-Filho, Ronaldo Bastos-
dc.contributor.referee2Gibran, Fernando Zaniolo-
dc.contributor.referee3Monteiro Neto, Cassiano-
dc.contributor.referee4Coutinho, Ricardo-
dc.date.accessioned2018-10-02T13:28:27Z-
dc.date.issued2013-04-30-
dc.identifier.citationNEVES, Leonardo Mitrano. Estrutura e diversidade das assembleias de peixes recifais na Baía da Ilha Grande: importância de variáveis físicas, da estrutura do habitat e variações temporais de curto prazo. 2013. 104 f. Dissertação (Mestrado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/2485-
dc.description.resumoAs assembleias de peixes recifais variam através de gradientes de mudanças extremas nas condições ambientais, tanto espaciais (ao longo de gradientes de distância da foz de rios) quanto em escalas temporais curtas (ao longo do ciclo diário de intensidade luminosa). Além disto, variações em resposta ao nível de heterogeneidade do habitat também podem ocorrer, mesmo entre recifes rochosos situados fora de intensos gradientes ambientais. Entender como as assembleias de peixes respondem a tais mudanças é fundamental para identificar variáveis determinantes dos padrões espaciais e predizer como impactos de grande e pequena intensidade podem afetar os padrões de diversidade. Os principais objetivos deste estudo foram: (1) determinar a influência de variáveis físicas (distância da foz do rio e exposição a ondas), biológicas (cobertura bêntica) e estruturais (altura do substrato e número de refúgios) na estruturação das assembleias de peixes, riqueza de espécies, abundância, biomassa e diversidade dos grupos tróficos; (2) avaliar as mudanças ao longo do ciclo diário na composição e estrutura da assembleia de peixes recifais; (3) relacionar a variação na composição de espécies (beta diversidade) com a heterogeneidade do habitat, para uma pequena escala (entre transectos de uma mesma área), e as relações entre a beta diversidade e medidas de diversidade alfa (riqueza de espécies, estimativa da riqueza e diversidade de Shannon). Para tal, censos visuais subaquáticos foram realizados (1) em costões rochosos da baía da Ilha Grande, em ilhas localizadas através de um gradiente de distância da foz de rios; (2) em seis diferentes horários, compreendendo o amanhecer (06:00h), manhã (08:30h), tarde (14:00h), anoitecer (17:30h) e início da noite (19:30h) e noite (21:00h) em dois recifes rochosos rasos; e (3) em transectos de quatro áreas para avaliar diversidade beta. Avaliações da estrutura do habitat (cobertura bêntica e complexidade topográfica) foram realizadas (para objetivos 1 e 3). A distância da foz do rio explicou entre 12,4% a 38,2% da estimativa dos componentes de variação (ECV) da PERMANOVA de todas as variáveis respostas analisadas, desempenhando um papel principal nos padrões espaciais da assembleia de peixes. Diferenças entre recifes próximos e distantes da foz atingiram um máximo de até 4,5x para a riqueza, 11x para a biomassa e 10x para a abundância. A altura do substrato foi positivamente relacionada com a abundância de peixes, riqueza de espécies e diversidade dos grupos tróficos (ECV entre 7,3% a 17,4%), enquanto o número de refúgios foi associado positivamente com a abundância de espécies de pequeno porte, como Stegastes fuscus, Emblemariopsis signifer e Scartella cristata. O efeito da cobertura bêntica foi significativo em determinar os padrões espaciais da estrutura da assembleia de peixes e da diversidade dos grupos tróficos (ECV = 8% e 10%, respectivamente), porém não foram observadas influências significativas da cobertura bêntica na riqueza de espécies, biomassa e abundância. A exposição às ondas teve um efeito significativo apenas para a estrutura da assembleia de peixes (ECV = 10%). As assembleias de peixes variaram drasticamente ao longo do ciclo diário. A riqueza de espécies e a abundância de peixes foram maiores durante os horários do dia, com valores intermediários nos horários crepusculares e atingiram os menores valores durante a noite. Maiores diferenças na estrutura da assembleia foram observadas entre o período diurno e noturno. Durante a noite, as famílias Sciaenidae, representado por Pareques acuminatus, e Pempheridae vii representado por Pempheris schomburgkii foram mais abundantes, enquanto Haemulidae Haemulon steindachneri, Pomacentridae Abudefduf saxatilis, Chaetodondidae Chaetodon striatus, e Labrisomidae Malacoctenus delalandii foram abundantes durante o dia. Os horários crepusculares foram semelhantes entre si, sendo caracterizados por espécies tanto dos horários do dia (H. steindachneri, M. acutirostris) quanto da noite (P. acuminatus), refletindo esse período de transição. Relações positivas significativas foram detectadas entre a heterogeneidade do habitat e a beta diversidade. A área com habitat mais homogêneo e de menor variação na composição da assembleia foi dominada por organismos tridimensionalmente pouco complexos (zoantídeos), enquanto a áreas que apresentaram algas frondosas, matriz de algas epilíticas (MAE) e zoantídeos com uma percentagem de cobertura mais equitativa, tiveram a maior heterogeneidade do habitat e beta diversidade. Para todas as medidas de diversidade alfa utilizadas, a área com habitat mais heterogêneo e com maior beta diversidade, apresentou uma diversidade alfa maior do que a área com habitat mais homogêneo e de menor beta diversidade. Entretanto, as relações positivas entre a beta diversidade e a diversidade alfa foram significativas apenas para a riqueza de espécies, e não para a estimativa da riqueza e a diversidade de Shannon. Este estudo demonstrou que variações nas assembleias em escalas espaciais e temporais curtas (desde entre transectos até 10 km, e ao longo do ciclo diário) podem ser atribuídas a mudanças na estrutura dos habitats locais, tanto na composição dos organismos bentônicos dominantes quanto na heterogeneidade do habitat e podem ser associadas a características comportamentais principalmente associadas a estratégias de obtenção de alimento e proteção contra predaçãopor
dc.description.abstractRocky reef fish assemblages change along extreme environmental conditions gradients; both spatial (across gradients of distance from the river mouths) and short term temporal (diel cycle of light intensity). Moreover, changes in connection to habitat heterogeneity can occur, even for tropical rocky reefs with a more homogenous habitat structure. Knowledge of the way that fish assemblages respond to these changes is fundamental to identify the variables that determine spatial patterns and to predict how impacts in great or low intensity can affect diversity. The main aims of this study were: (1) to determine influence of physical (distance from river mouth and wave exposure), biological (benthic cover) and structural (substratum height and number of shelters) variables in structuring fish assemblages, species richness, abundance, biomass and trophic groups diversity; (2) to assess diel changes in composition and structure of fish assemblages; (3) to relate changes in species composition (beta diversity) with habitat heterogeneity for a small scale (among transects in a given area), and the relationship between beta and alfa diversity (species richness, richness estimation and Shannon diversity). Subaquatic visual census were carried out in Ilha Grande coastal reefs, encompassing (1) islands distributed along a spatial gradient of distance from river mouth; (2) six different time periods, i.e., sunrise (06:00h), morning (08:30h), afternoon (14:00h), sunset (17:30h), early night (19:30h) and night (21:00h) in two shallow coastal reef; and (3) in transect in four areas to assess beta biodiversity. Habitat structure (benthic cover and topographic complexity) assessment was performed (objectives 1 and 3). The distance from river mouth explained from 12.4% to 38.2% of the estimated components of variation (ECV) of PERMANOVA for all analyzed response variables, playing a major role in determining spatial patterns of fish assemblages. Differences between reefs close and far from river mouth reached a maximum of 4.5x for richness, 11x for biomass and 10x for abundance. The substrate height was positively related to fish abundance, species richness and trophic groups diversity (ECV between 7.3 % and 17.4%), whereas the number of shelters was positively associated to small-sized species abundance such as Stegastes fuscus, Emblemariopsis signifer and Scartella cristata. Benthic cover had significant influence to determine spatial pattern in fish assemblage structure and diversity of trophic groups (ECV = 8% and 10%, respectively), but not in species richness, biomass and fish abundance. Wave exposure had significant influence on fish assemblage structure only (ECV = 10%). The fish assemblage changes drastically along diel cycle. Species richness and fish abundance were at the highest during the period of the day with intermediary values at twilight periods, and at the lowest during the night. The highest difference in assemblage structure was found between the periods of the day and the night. The families Sciaenidae, mainly represented by Pareques acuminatus, and Pempheridae represented by Pempheris schomburgkii were more abundant during the night, whereas Haemulidae Haemulon steindachneri, Pomacentridae Abudefduf saxatilis, Chaetodondidae Chaetodon striatus, and Labrisomidae Malacoctenus delalandii were more abundant during the day. The twilight periods were similar in assemblage structure, and had as characteristics species of the day (H. steindachneri, M. acutirostris) and the night (P. acuminatus), reflecting a transitional period. Significant positive relationship was detected between habitat heterogeneity and beta diversity. The area with more ix homogeneous habitat and low variation in fish assemblage was dominated by little threedimensionally complex organisms (zoanthids), while areas that had fleshy algae, turf and zoanthids with a more even percentage cover had higher heterogeneity and beta diversity. For all measures of examined alfa diversity, the area with more heterogeneous habitat and with the highest beta diversity had the highest alfa diversity compared with areas with more homogenous habitat e lowest beta diversity. However, positive relationship between alfa and beta diversity was significant for species richness, but not for estimate of richness and Shannon index. This study demonstrated that changes in assemblages in spatial and short term (from transects to 10 km, and diel cycle) scales may be attributed to changes in local habitat structure, both composition of dominant benthic organisms and habitat heterogeneity and can be associated to behavioral characteristics mainly related to strategies of food acquirement and protection against predationeng
dc.description.provenanceSubmitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2018-10-02T13:28:26Z No. of bitstreams: 1 2013 - Leonardo Mitrano Neves.pdf: 2710150 bytes, checksum: e76a622435676fcc3b2281358ce93865 (MD5)eng
dc.description.provenanceMade available in DSpace on 2018-10-02T13:28:27Z (GMT). No. of bitstreams: 1 2013 - Leonardo Mitrano Neves.pdf: 2710150 bytes, checksum: e76a622435676fcc3b2281358ce93865 (MD5) Previous issue date: 2013-04-30eng
dc.description.sponsorshipCNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológicopor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/8741/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/15374/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/21676/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/28060/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/34438/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/40826/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/47182/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/53604/2013%20-%20Leonardo%20Mitrano%20Neves.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.referencesAIROLDI, L. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology: an Annual Review, v. 41, p. 161–236. 2003. ALFRED, W.E.; BRAY, R.N. Day versus night activity of reef fishes in a kelp forest off Santa Barbara, California. Fishery Bulletin, v. 74, n. 4, p. 703–717. 1976. AZZURRO, E.; PAIS, A.; CONSOLI, P.; ANDALORO, F. Evaluating day–night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Marine Biology, v. 151, n. 6, p. 2245–2253. 2007. BAZZAZ, F.A. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, v. 56, p. 485– 488. 1975. BEGER, M.; POSSINGHAM, H.P. Environmental factors that influence the distribution of coral reef fishes : modeling occurrence data for broad-scale conservation and management. Marine Ecology Progress Series, v. 361, p. 1–13. 2008. CASTILLO-RIVERA, M.; ZÁRATE-HERNÁNDEZ, R.; ORTIZ-BURGOS, S.; ZAVALAHURTADO, J. Diel and seasonal variability in the fish community structure of a mud-bottom estuarine habitat in the Gulf of Mexico. Marine Ecology, v. 31, n. 4, p. 633–642. 2010. CONNELL, J.H. Diversity and the co-evolution of competitors, or the ghost of competition past. Oikos, v. 35, p. 131–138. 1980. CONNELL, S.D.; ANDERSON, M. J. Predation by fish on assemblages of intertidal epibiota: effects of predator size and patch size. Journal of Experimental Marine Biology and Ecology, v. 241, p. 15–29. 1999. CREED, J.C.; OLIVEIRA, A.E.S.; PIRES, D.O.; FIGUEIREDO, M.A.O.; FERREIRA, C.E.L. et al. RAP Ilha Grande – um levantamento da biodiversidade: histórico e conhecimento da biota; p. 43-63; In J.C. CREED, D.O. PIRES & M.A.O. FIGUEIREDO (ed.). Biodiversidade Marinha da Baía da Ilha Grande. Brasília, DF. MMA/SBF. 2007. ERIKSSON, B.K.; RUBACH, A.; HILLEBRAND, H. Biotic habitat complexity controls species diversity and nutrient effects on net biomass production. Ecology, v. 87, n. 1, 246–54. 2006. FERREIRA, C.E.L.; PERET, A.C; COUTINHO, R. Seasonal grazing rates and food processing by tropical herbivore fishes. Journal of Fish Biology, v. 53, n. 222–235. 1998. FERREIRA, C.E.L.; FERREIRA, C.G.W.; RANGEL, C.A.; MENDONÇA, J.P.; GERHARDINGER, L.C.; FILHO, A.C.; GODOY, E.A.; LUIZ JUNIOR, O.; GASPARINI, J.L. In: CREED, J.C.; PIRES, D.O. & FIGUEIREDO, M.A.O. (Orgs). Biodiversidade marinha da Baía da Ilha Grande. Brasília, Ministério do Meio Ambiente (Série Biodiversidade 23) p. 293-332. 2007. 7 FLOETER, S.R.; KROHLING, W.; GASPARINI J.L.; FERREIRA C.E.L; ZALMON, I.R. Reef fish community structure on coastal islands of the southeastern Brazil : the influence of exposure and benthic cover. Environmental Biology of Fishes, v. 78, p. 147–160. 2007. FORCADA, A.; BAYLE-SEMPERE, J.T.; VALLE, C.; SÁNCHEZ-JEREZ, P. Habitat continuity effects on gradients of fish biomass across marine protected area boundaries. Marine environmental research, v. 66, n. 5, p. 536–47. 2008. FRERET-MEURER, N.V.; ANDREATA, J.V.; MEURER, B.C.; MANZANO, F.V.; BAPTISTA, M.G.S.; TEIXEIRA, D.E.; LONGO, M.M. Spatial distribution of metals in sediments of the Ribeira Bay, Angra dos Reis, Rio de Janeiro, Brazil. Marine pollution bulletin, v. 60, n. 4, p. 627–629. 2010. FRIEDLANDER, A.M.; PARRISH, J.D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology, v. 224, p. 1– 30. 1998. FULTON, C.J.; BELLWOOD, D.R. Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology, v. 144, p. 429– 437. 2004. FULTON, C.J.; BELLWOOD, D.R.; WAINWRIGHT, P.C. Wave energy and swimming performance shape coral reef fish assemblages. Proceedings of the Royal Society/ Biological sciences, v. 272, p. 827–832. 2005. GARCÍA-CHARTON, J.A.; PÉREZ-RUZAFA, A.; SÁNCHEZ-JEREZ, P.; BAYLESEMPERE, J.T.; REÑONES, O.; MORENO, D. Multi-scale spatial heterogeneity, habitat structure, and the effect of marine reserves on Western Mediterranean rocky reef fish assemblages. Marine Biology, v. 144, p. 161–182. 2004. GARCÍA-CHARTON, J.A.; PÉREZ RUZAFA, A. Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Marine Biology, v. 138, p. 917– 934. 2001. GOLBUU, Y.; VAN WOESIK, R.; RICHMOND, R.H.; HARRISON, P.; FABRICIUS, K.E. River discharge reduces reef coral diversity in Palau. Marine pollution bulletin, v. 62, p. 824–31. 2011. GRATWICKE, B.; SPEIGHT, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, v. 66, p. 650–667. 2005. GRATWICKE, B.; SPEIGHT, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, v. 66, p. 650–667. 2005. GRIFFITHS, S.P. Diel variation in the seagrass ichthyofaunas of three intermittently open estuaries in south-eastern Australia : implications for improving fish diversity assessments. Fisheries Management and Ecology, v. 8, p. 123–140. 2001. 8 GUIDETTI, P.; BOERO, F. Desertification of Mediterranean rocky reefs caused by datemussel, Lithophaga lithophaga (Mollusca: Bivalvia), fishery: effects on adult and juvenile abundance of a temperate fish. Marine Pollution Bulletin, v. 48, p. 978–982. 2004. GUIMARAENS, M.A.; COUTINHO R. Spatial and temporal variation of benthic marine algae at Cabo Frio upwelling region, Rio de Janeiro, Brazil. Aquatic Botany, v. 52, p. 283– 299. 1996. HEINO, J.; GRÖNROOS, M.; ILMONEN, J.; KARHU, T.; NIVA, M.; PAASIVIRTA, L. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science, v. 32, p. 142–154. 2013. HOBSON, E.S. Activity of Hawaiian reef fishes during the evening and morning transitions between daylight and darkness. Fishery Bulletin, v. 70, p. 715–740. 1972. JONES, G.P. Ecology of rocky reef fish of north-eastern New Zealand: a review. New Zeland Journal of Marine and Freshwater Research, v. 22, p. 445–462. 1988. KARNAUSKAS, M.; CHÉRUBIN, L.M.; HUNTINGTON, B.E.; BABCOCK, E.A.; THONEY, D.A. Physical forces influence the trophic structure of reef fish communities on a remote atoll. Limnology Oceanography, v. 57, p. 1403–1414. 2012. KOVALENKO, K.E.; THOMAZ, S.M.; WARFE, D.M. Habitat complexity : approaches and future directions. Hydrobiologia, v. 685, p. 1–17. 2012. KRAJEWSKI, J.P.; FLOETER, S.R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition. Environmental Biology of Fishes, v. 92, n. 1, p. 25–40. 2011. LEVIN, P.S.; HAY, M.E. Responses of temperate reef fishes to alterations in algal structure and species composition. Marine Ecology Progress Series, v. 134, p. 37–47. 1996. LOREAU, M. Are communities saturated? On the relationship between alpha, beta and gamma diversity. Ecology Letters, v. 3, n. 2, p.73–76. 2000. LUCKHURST, B.E.; LUCKHURST, K. Analysis of the influence of substrate variables on coral reef fish communities. Marine Biology, v. 49, p. 317–323. 1978. MALLELA, J.; ROBERTS, C.; HARROD, C.; GOLDSPINK, C.R. Distributional patterns and community structure of Caribbean coral reef fishes within a river-impacted bay. Journal of Fish Biology, v. 70, p. 523–537. 2007. MCCLANAHAN, T.R.; ARTHUR, R. The effect of marine reserves and habitat on populations of east African coral reef fishes. Ecological Applications, v. 11, p. 559–569. 2001. MCGEHEE, M.A. Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico. Marine Ecology Progress Series, v. 105, p. 243–255. 1994. 9 MÉNARD, A.; TURGEON, K.; KRAMER, D.L. Selection of diurnal refuges by the nocturnal squirrelfish, Holocentrus rufus. Environmental Biology of Fishes, v. 82, n. 1, p. 59–70. 2007. MENDONÇA-NETO, J.P.; FERREIRA, C.E.L.; CHAVES, L.C.T.; PEREIRA, R.C. Influence of Palythoa caribaeorum (Anthozoa, Cnidaria) zonation on site-attached reef fishes. Anais da Academia Brasileira de Ciências, v. 80, n.3, p. 495–513. 2008. NGUYEN, L.; PHAN, H. Distribution and factors influencing on structure of reef fish communities in Nha Trang Bay Marine Protected Area, South-Central Vietnam. Environmental Biology of Fishes, v. 82, n. 3, p. 309–324. 2007. PESSANHA, A.L.M.; ARAÚJO, F.G.; AZEVEDO, M.C.C.; GOMES, I.D. Diel and seasonal changes in the distribution of fish on a southeast Brazil sandy beach. Marine Biology, v. 143, n. 6, p. 1047–1055. 2003. PIET, G.J.; GURUGE, W. Diel variation in feeding and vertical distribution of ten cooccurring fish species: consequences for resource partitioning. Environmental Biology of Fishes, v. 50, p. 293–307. 1997. ROBERTS, C.M.; ORMOND, R.F.G. Habitat complexity and coral reef fish diversity and abundance on Red Sea fringing reefs. Marine Ecology Progress Series, v. 41, p. 1–8. 1987. RODRÍGUEZ-ZARAGOZA, F.A.; CUPUL-MAGAÑA, A.L.; GALVÁN-VILLA, C.M.; RÍOS-JARA, E.; ORTIZ, M.; ROBLES-JARERO, E.G.; LÓPEZ-URIARTE, E.; ARIASGONZÁVEZ, J.E. Additive partitioning of reef fish diversity variation: a promising marine biodiversity management tool. Biodiversity and Conservation, v. 20, n. 8, p. 1655–1675. 2011. SACCOL-PEREIRA, A.; FIALHO, C.B. Seasonal and diel variation in the fish assemblage of a Neotropical delta in southern Brazil. Iheringia, Série Zoológica, v. 100, p. 169–178. 2010. SANTIN, S.; WILLIS, T.J. Direct versus indirect effects of wave exposure as a structuring force on temperate cryptobenthic fish assemblages. Marine Biology, v. 151, n. 5, p. 1683– 1694. 2007. SRIVASTAVA, D.S. Using local–regional richness plots to test for species saturation: pitfalls and potentials. Journal of Animal Ecology, v. 68, p. 1–16. 1999. STUART-SMITH, R.D.; BARRETT, N.S.; CRAWFORD, C.M.; FRUSHER, S.D.; STEVENSON, D.G.; EDGAR, G.J. Spatial patterns in impacts of fishing on temperate rocky reefs: Are fish abundance and mean size related to proximity to fisher access points? Journal of Experimental Marine Biology and Ecology, v. 365, n. 2, p. 116–125. 2008. TEIXEIRA, T.P.; NEVES, L.M.; ARAÚJO, F.G. Thermal impact of a nuclear power plant in a coastal area in southeastern Brazil: effects of heating and physical structure on benthic cover and fish communities. Hydrobiologia, v. 684, p. 161–175. 2012. 10 TEIXEIRA, T.P.; NEVES, L.M.; ARAÚJO, F.G. Effects of a nuclear power plant thermal discharge on habitat complexity and fish community structure in Ilha Grande Bay, Brazil. Marine Environmental Research, v. 68, n. 4, p. 188–195. 2009. TEWS, J.; BROSE, U.; GRIMM, V.; TIELBÖRGER, K.; WICHMANN, M.C.; SCHWAGER, M.; JELTSCH, F. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, v. 31, p. 79–92. 2004. TOLIMIERI, N. Effects of microhabitat characteristics on the settlement and recruitment of a coral reef fish at two spatial scales. Oecologia, v. 102, p. 52–63. 1995. WEBB, C.O.; LOSOS, J.B.; AGRAWAL, A.A. Integrating phylogenies into community ecology. Ecology, v. 87, p. 1–2. 2006. WENGER, A.S.; JOHANSEN, J.L.; JONES, G.P. Increasing suspended sediment reduces foraging, growth and condition of a planktivorous damselfish. Journal of Experimental Marine Biology and Ecology, v. 428, p. 43–48. 2012. WENGER, A.S.; JOHANSEN, J.L.; JONES, G.P. Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs, v. 30, p. 879–887. 2011. WILSON, S.K; BELLWOOD, D.R; CHOAT, J.H; FURNAS, M.J. Detritus in the epilithic algal matrix and its use by coral reef fishes. Oceanography and Marine Biology - An Annual Review, v. 41, p. 279–309. 2003. WOLTER, C.; FREYHOF, J. Diel distribution patterns of fishes in a temperate large lowland river. Journal of Fish Biology, v. 64, p. 632–642. 2004. ZEMKE-WHITE, W.L.; CHOAT, J.H.; CLEMENTS, K.C. A re-evaluation of the diel feeding hypothesis for marine herbivorous fishes. Marine Biology, v. 141, n. 3, p. 571–579. 2002. AIROLDI, L. The effects of sedimentation on rocky coast assemblages. Oceanography and Marine Biology: an Annual Review, v. 41, p. 161–236. 2003. AIROLDI, L.; BALATA, D.; BECK, M.W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. Journal of Experimental Marine Biology and Ecology, v. 366, n. 1-2, p. 8–15. 2008. ALMANY, G.R; WEBSTER, M.S. The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs, v. 25, p. 19–22. 2006. ANDERSON, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecology, v. 26, p. 32– 46. 2001. ANDERSON, M.J.; GORLEY, R.N.; CLARKE, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E, Plymouth, UK, 2008. 214 p. BEGER, M.; POSSINGHAM, H.P. Environmental factors that influence the distribution of coral reef fishes : modeling occurrence data for broad-scale conservation and management. Marine Ecology Progress Series, v. 361, p. 1–13. 2008. BEJARANO, S.; MUMBY, P.J.; SOTHERAN, I. Predicting structural complexity of reefs and fish abundance using acoustic remote sensing (RoxAnn). Marine Biology, v. 158, p. 489–504. 2011. BELLWOOD, D.R.; FULTON, C.J. Sediment-mediated suppression of herbivory on coral reefs: Decreasing resilience to rising sea-levels and climate change? Limnology and Oceanography, v. 53, n. 6, p. 2695–2701. 2008. BOHNSACK, J.A; HARPER, D.E. Length-weight relationships of selected marine reef fishes from the southeastern United States and the Caribbean. 47 NOAA Technical Memorandum NMFS-SEFC-215. Miami: Southeast Fisheries Center, 1988. 31 p. BONALDO, R.M.; BELLWOOD, D.R. Spatial variation in the effects of grazing on epilithic algal turfs on the Great Barrier Reef, Australia. Coral Reefs, v. 30, n. 2, p. 381–390. 2010. BOUCHON-NAVARRO, Y; BOUCHON C. Correlations between chaetodontid fishes and coral communities of the Gulf of Aqaba (Red Sea). Environmental Biology of Fishes, v. 25, p. 47–60. 1989. CACABELOS, E.; OLABARRIA, C.; INCERA, M.; TRONCOSO, J.S. Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. Estuarine, Coastal and Shelf Science, v. 89, n. 1, p. 43–52. 2010. CAMILATO, V.; SIMON, T.; PINHEIRO, H.T.; PIMENTEL, C.R.; JOYEUX, J.-C. Length-weight relationships for some cryptobenthic reef fishes off Guarapari. Journal of Applied Ichthyology, 26: 463–464. 2010. CHARBONNEL, E.; SERRE, C.; RUITTON, S.; HARMELIN, J-G.; JENSEN, A. Effects of increased habitat complexity on fish assemblages associated with large artificial reef units (French Mediterranean coast). ICES Journal of Marine Science, v. 59, p. 208–213. 2002. CHEMELLO, R., MILAZZO, M. Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology, v. 140, p. 981 – 990. 2002. CHONG-SENG, K.M.; MANNERING, T.D.; PRATCHETT, M.S.; BELLWOOD, D.R.; GRAHAM, N.J. The influence of coral reef benthic condition on associated fish assemblages. PloS one, v. 7, n. 8, p. e42167. 2012. CONI, E.O.C.; FERREIRA, C.M.; MOURA, R.L.; MEIRELLES, P.M.; KAUFMAN, L.; FRANCINI-FILHO, R.B. An evaluation of the use of branching fire-corals (Millepora spp.) as refuge by reef fish in the Abrolhos Bank, eastern Brazil. Environmental Biology of Fishes, v. 96, n. 1, p. 45–55. 2012. DE RAEDEMAECKER, F.; MILIOU, A.; PERKINS, R. Fish community structure on littoral rocky shores in the Eastern Aegean Sea: Effects of exposure and substratum. Estuarine, Coastal and Shelf Science, v. 90, n. 1, p. 35–44. 2010. DEVICTOR, V.; JULLIARD, R.; JIGUET, F. Distribution of specialist and generalist species along spatial gradients of habitat disturbance and fragmentation. Oikos, v. 117, p. 507–514. 2008. DIAS, C.; BONECKER, S.L.C. Long-term study of zooplankton in the estuarine system of Ribeira Bay, near a power plant (Rio de Janeiro, Brazil). Hydrobiologia, v. 614, n. 1, p. 65–81. 2008. ENGQVIST, L. 2005. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour, v. 70, p. 967–971. 48 FABI, G.; FIORENTINI, L. Comparison between an artificial reef and a control site in the Adriatic Sea: analysis of four years of monitoring. Bulletin of Marine Science, v. 55, p. 538–558. 1994. FABRICIUS, K.E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Marine pollution bulletin, v. 50, n. 2, p. 125–46. 2005. FERREIRA, C.EL.; GONCALVES, J.E.A; COUTINHO, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes, v. 61, p. 353–369. 2001. FERREIRA, C.E.L.; FLOETER, S.R.; GASPARINI, J.L.; FERREIRA, B.P. JOYEUX, J.C. Trophic structure patterns of Brazilian reef fishes : a latitudinal comparison. Journal of Biogeography, v. 31, n. 7, p. 1093–1106. 2004. FLOETER, S.R., KROHLING, W.; GASPARINI J.L.; FERREIRA C.E.L; ZALMON, I.R. Reef fish community structure on coastal islands of the southeastern Brazil : the influence of exposure and benthic cover. Environmental Biology of Fishes, v. 78, p. 147–160. 2007. FRANCINI-FILHO, R.B.; FERREIRA, C.M.; CONI, E.O.C.; DE MOURA, R.L.; KAUFMAN, L. Foraging activity of roving herbivorous reef fish (Acanthuridae and Scaridae) in eastern Brazil: influence of resource availability and interference competition. Journal of the Marine Biological Association of the United Kingdom, v. 90, n 3, p. 481. 2009. FRANCISCO, C.N.; CARVALHO, C.N. Disponibilidade Hídrica: Da Visão Global às Pequenas Bacias Hidrográficas: O Caso de Angra dos Reis. Revista de geociências, v. 3, p. 53–72. 2004. FRIEDLANDER, A.M.; PARRISH, J.D. Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. Journal of Experimental Marine Biology and Ecology, v. 224, p. 1–30. 1998. FROESE, R.; PAULY, D. Fish Base. Disponível em: <http://www.fishbase.org>. Acesso em: Janeiro, 2013. FULTON, C. J.; BELLWOOD, D.R. Wave exposure, swimming performance, and the structure of tropical and temperate reef fish assemblages. Marine Biology, v. 144, p. 429–437. 2004. FULTON, C.J.; BELLWOOD, D.R; WAINWRIGHT, P.C. Wave energy and swimming performance shape coral reef fish assemblages. Proceedings of the Royal Society/ Biological sciences, v. 272, p. 827–32. 2005. GARCÍA-CHARTON, J.A., PÉREZ RUZAFA, A. Spatial pattern and the habitat structure of a Mediterranean rocky reef fish local assemblage. Marine Biology, v. 138, p. 917– 934. 2001. GIBRAN, F.Z.; MOURA, R.L.D. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotropical Ichthyology, v. 10, n. 2, p. 369–382. 2012. 49 GOATLEY, C.H.R.; BELLWOOD, D.R. Sediment suppresses herbivory across a coral reef depth gradient. Biology letters, (Outubro), p. 24–27. 2012. GOLBUU, Y.; VAN WOESIK, R.; RICHMOND, R.H.; HARRISON, P.; FABRICIUS, K.E. River discharge reduces reef coral diversity in Palau. Marine pollution bulletin, v. 62, p. 824–31. 2011. GRATWICKE, B.; SPEIGHT, M.R. The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. Journal of Fish Biology, v. 66, p. 650–667. 2005. HARBORNE, A.R.; MUMBY, P.J.; FERRARI, R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environmental Biology of Fishes, v. 94, n. 2, p. 431–442. 2011. HUNTER, W.R., SAYER, M.D.J. The comparative effects of habitat complexity on faunal assemblages of northern temperate artificial and natural reefs. ICES Journal of Marine Science, v. 66, n. 4, p. 691–698. 2009. IGNACIO, B.L.; JULIO, L.M.; JUNQUEIRA, A.O.R.; FERREIRA-SILVA, M.A.G. Bioinvasion in a Brazilian bay: filling gaps in the knowledge of southwestern Atlantic biota. PloS one, v. 5, n. 9, p 1–9. 2010. Instituto Brasileiro de Geografia e Estatística, Geografia do Brasil–Região Sudeste. Instituto Brasileiro de Geografia e Estatística, v. 3, p. 1–89. 1977. KARNAUSKAS, M.; CHÉRUBIN, L.M.; HUNTINGTON, B.E.; BABCOCK, E.A.; THONEY, D.A. Physical forces influence the trophic structure of reef fish communities on a remote atoll. Limnology Oceanography, v. 57, p. 1403–1414. 2012. KRAJEWSKI, J.P.; FLOETER, S.R. Reef fish community structure of the Fernando de Noronha Archipelago (Equatorial Western Atlantic): the influence of exposure and benthic composition. Environmental Biology of Fishes, v. 92, n. 1, p. 25–40. 2011. KUFFNER, I.B.; GROBER-DUNSMORE, R.; BROCK, J.C.; HICKEY, T.D. Biological community structure on patch reefs in Biscayne National Park, FL, USA. Environmental monitoring and assessment, v. 164, p. 513–31. 2010. KOHLER, K.E.; GILL, S.M. Coral Point Count with Excel extensions (CPCe): Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, v. 32, p. 1259–1269. 2006. LEGENDRE, P.; ANDERSON, M.J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecological Monographys, v. 69, p. 1–24. 1999. LETOURNEUR, Y.; KULBICKI, M.; LABROSSE, P. Spatial structure of commercial reef fish communities along a terrestrial runoff gradient in the northern lagoon of New Caledonia. Environmental Biology of Fishes, v. 51, p. 141–159. 1998. 50 LUCKHURST, B.E.; LUCKHURST, K. Analysis of the influence of substrate variables on coral reef fish communities. Marine Biology, v. 49, p. 317–323. 1978. MACIEIRA; R. M.; JOYEUX, J.-C. Length–weight relationships for rockpool fishes in Brazil. Journal of Applied Ichthyology, v. 1–2. 2008. MALCOLM, H.A.; JORDAN, A.; SMITH, S.D. Testing a depth-based habitat classification system against reef fish assemblage patterns in a subtropical marine park. Aquatic Conservation: Marine and Freshwater Ecosystems, v. 21: 173– 185. 2011. MALLELA, J.; ROBERTS, C.; HARROD, C.; GOLDSPINK, C.R. Distributional patterns and community structure of Caribbean coral reef fishes within a riverimpacted bay. Journal of Fish Biology, v. 70, p. 523–537. 2007. MCARDLE, B.H.; ANDERSON, M.J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, v. 82, p. 290–297. 2001. MCGEHEE, M.A. Correspondence between assemblages of coral reef fishes and gradients of water motion, depth, and substrate size off Puerto Rico. Marine Ecology Progress Series, v. 105, p. 243–255. 1994. MCKINNEY, M.L.; LOCKWOOD, J.L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, v. 14, p. 450– 453. 1999. MEDEIROS, P.R.; GREMPEL, R.G.; SOUZA, A.T.; ILARRI, M.I.; ROSA, R.S. Non-random reef use by fishes at two dominant zones in a tropical, algal-dominated coastal reef. Environmental Biology of Fishes, 87: 237–246. 2010. MENDONÇA-NETO, J.P.; FERREIRA, C.E.L.; CHAVES, L.C.T.; PEREIRA, R.C. Influence of Palythoa caribaeorum (Anthozoa, Cnidaria) zonation on site-attached reef fishes. Anais da Academia Brasileira de Ciências, v. 80, n. 3, p. 495–513. 2008. MUNDAY, P.L. Does variability determine geographical-scale abundances of coraldwelling fishes? Coral Reefs, v. 21, p. 105–116. 2002. MUSSI, M.; MCFARLAND, W.N; DOMENICI, P. Visual cues eliciting the feeding reaction of planktivorous fish swimming in a current. Journal of Experimental Biology, v. 208, p. 831–842. 2005. NOGUEIRA, C.R.; BONECKER, A.C.T.; BONECKER, S.L.C.; SANTOS, C.C. Studies of zooplankton near the Nuclear Power Plant—Angra I. Preoperational conditions (RJ-Brazil), p. 3221–3233. In MAGOON, O. (ed.), Coastal Zone ‘91— Beach, v. 4. New York: American Society of Civil Engineering, 1991. PERRY, C.T.; LARCOMBE, P. Marginal and non-reef-building coral environments. Coral Reefs, v. 22, n. 4, p. 427–432. 2003. SANTIN, S.; WILLIS, T.J. Direct versus indirect effects of wave exposure as a structuring force on temperate cryptobenthic fish assemblages. Marine Biology, v. 151, n. 5, p. 1683–1694. 2007. 51 SCHIEL, D.R.; WOOD, S.A.; DUNMORE, R.A.; TAYLOR, D.I. Sediment on rocky intertidal reefs: Effects on early post-settlement stages of habitat-forming seaweeds. Journal of Experimental Marine Biology and Ecology, v. 331, p. 158–172. 2006. WENGER, A.S., JOHANSEN, J.L.; JONES, G.P. Journal of Experimental Marine Biology and Ecology Increasing suspended sediment reduces foraging , growth and condition of a planktivorous damselfish. Journal of Experimental Marine Biology and Ecology, v. 428, p. 43–48. 2012. WENGER, A.S.; JOHANSEN, J.L.; JONES, G.P. Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs, 30: 879–887. 2011. WILLIS, T.J.; BADALAMENTI, F.; MILAZZO, M. Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology, v. 331, p. 1, n. 108–120. 2006. ZUUR, A.F; IENO, E.N; SMITH, G.M. Analysing ecological data. Berlin: Springer Verlag, 2007, 672 p. ALLEN, J.J.; MÄTHGER, L.M.; BURESCH, K.C.; FETCHKO, T.; GARDNER, M.; HANLON, R.T. Night vision by cuttlefish enables changeable camouflage. The Journal of experimental biology, v. 213, n. 23, p. 3953–60. 2010. ANDERSON, M.J; WILLIS, T.J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, v. 84, p. 511–525. 2003. ANDERSON, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecology, v. 26, p. 32– 46. 2001. ANDERSON, M.J. Distance-based tests for homogeneity of multivariate dispersions. Biometrics, v. 62, n. 1, p. 245–253. 2006. ANDERSON, M.J.; GORLEY, R.N.; CLARKE, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E, Plymouth, UK, 2008. 214 p. 74 ANNESE, D.M.; KINGSFORD, M.J. Distribution, movements and diet of nocturnal fishes on temperate reefs. Environmental Biology of Fishes, v. 72, n. 2, p. 161–174. 2005. AZZURRO, E.; PAIS, A.; CONSOLI, P.; ANDALORO, F. Evaluating day–night changes in shallow Mediterranean rocky reef fish assemblages by visual census. Marine Biology, v. 151, n. 6, p. 2245–2253. 2007. BONALDO, R.M.; KRAJEWSKI, J.P.; SAZIMA, I. Meals for two: foraging activity of the butterflyfish Chaetodon striatus (Perciformes) in southeast Brazil. Brazilian journal of biology, v. 65, n. 2, p. 211–5. 2005. BOWMAKER, J.K. The visual pigments of fish. Progress in Retinal and Eye Research, v. 15, p. 1–31. 1995. CARPENTIERI, P.; COLLOCA, F.; ARDIZZONE, G.D. Day–night variations in the demersal nekton assemblage on the Mediterranean shelf-break. Estuarine, Coastal and Shelf Science, v. 63, n. 4, p. 577–588. 2005. COLLETTE, B.B.; TALBOLT, F.H. Activity patterns of coral reef fishes with emphasis on nocturnal-diurnal changeover. Bulletin of the Natural History Museum, Los Angeles, v. 14, p. 98–124. 1972. COLWELL, R.K. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and applications. Disponível em <http:// viceroy.eeb.uconn.edu/EstimateS>. Acesso em janeiro 2011. DANILOWICZ, B.S.; SALE, P.F. Relative intensity of predation on the French grunt, Haemulon flavolineatum, during diurnal, dusk, and nocturnal periods on a coral reef. Marine Biology, v. 133, p. 337–343. 1999. EBELING, A.W.; BRAY R.N. Day versus night activity of reef fishes in a kelp forest off Santa Barbara, California. Fishery bulletin, v. 74, n. 4, p. 703–717. 1976. ENGQVIST, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Animal Behaviour, v. 70, p. 967–971. 2005. FERREIRA, C.E.L.; GONCALVES, J.E.A; COUTINHO, R. Community structure of fishes and habitat complexity on a tropical rocky shore. Environmental Biology of Fishes, v. 61, p. 353–369. 2001. FERREIRA, C.E.L.; PERET, A.C.; COUTINHO, R. Seasonal grazing rates and food processing by tropical herbivore fishes. Journal of Fish Biology, v. 53, p. 222–235. 1998. FERREIRA, C.E.L.; FERREIRA, C.G.W.; RANGEL, C.A.; MENDONÇA, J.P.; GERHARDINGER, L.C.; FILHO, A.C.; GODOY, E.A.; LUIZ JUNIOR, O.; GASPARINI, J.L. In: CREED, J.C.; PIRES, D.O. & FIGUEIREDO, M.A.O. (Orgs). Biodiversidade marinha da Baía da Ilha Grande. Brasília, Ministério do Meio Ambiente (Série Biodiversidade 23) p. 293-332. 2007. 75 FERREIRA, C.E.L.; FLOETER, S.R.; GASPARINI, J.L.; FERREIRA, B.P. JOYEUX, J.C. Trophic structure patterns of Brazilian reef fishes : a latitudinal comparison. Journal of Biogeography, v. 31, n. 7, p. 1093–1106. 2004. FLOETER, S.R.; KROHLING, W.; GASPARINI J.L.; FERREIRA C.E.L; ZALMON, I.R. Reef fish community structure on coastal islands of the southeastern Brazil : the influence of exposure and benthic cover. Environmental Biology of Fishes, v. 78, p. 147–160. 2007. FREON, P.; GERLOTTO, F; SORLA, M. Diel variability of school structure with species reference to transition periods. ICES Journal of Marine Science, v. 53, p. 459–464. 1996. GIBRAN, F.Z.; MOURA, R.L.D. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotropical Ichthyology, v. 10, n. 2, p. 369–382. 2012. GIBRAN, F.Z. Activity, habitat use, feeding behavior, and diet of four sympatric species of Serranidae (Actinopterygii: Perciformes) in southeastern Brazil. Neotropical Ichthyology, v. 5, n. 3, p. 387–398. 2007. GLADFELTER, W.B. Twilight migrations and foraging behaviour of the Copper Sweeper Pempheris schomburgki (Teleosti: Pempheridae). Marine Biology, v. 50, p. 109–119. 1979. HAMMERSCHLAG, N.; HEITHAUS, M.R.; SERAFY, J.E. The influence of predation risk and food supply on nocturnal fish foraging distributions along a subtropical mangrove-seagrass ecotone. Marine Ecology Progress Series, v. 414, p. 223–235. 2010. HARVEY, E.S.; BUTLER, J.J.; MCLEAN, D.L.; SHAND, J. Contrasting habitat use of diurnal and nocturnal fish assemblages in temperate Western Australia. Journal of Experimental Marine Biology and Ecology, v. 426-427, p. 78–86. 2012. HELFMAN, G.S. Fish behaviour by day, night and twilight. In: Behaviour of Teleost Fishes (Ed. by T. J. Pitcher), London: Chapman & Hall, 1986. p. 479–512. HOBSON, E.S. Activity of Hawaiian reef fishes during the evening and morning transitions between daylight and darkness. Fishery Bulletin, v. 70, p. 715–740. 1972. HOLZMAN, R.; OHAVIA, M.; VAKNIN, R.; GENIN, A. Abundance and distribution of nocturnal fishes over a coral reef during the night. Marine Ecology Progress Series, v. 342, p. 205–215. 2007. Instituto Brasileiro de Geografia e Estatística. Geografia do Brasil–Região Sudeste. Instituto Brasileiro de Geografia e Estatística, v. 3, p. 1–89. 1977. MASUDA, R.; MATSUDA, K.; TANAKA, M. Laboratory video recordings and underwater visual observations combined to reveal activity rhythm of red-spotted grouper and banded wrasse, and their natural assemblages. Environmental Biology of Fishes, v. 95, n. 3, p. 335–346. 2012. 76 MCARDLE, B.H.; ANDERSON, M.J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology, v. 82, p. 290–297. 2001. MCFARLAND, W.N.; OGDEN, J.C.; LYTHGOE, J.N. The influence of light on the twilight migrations of grunts. Environmental Biology of Fishes, v. 4, p. 9–22. 1979. MILAZZO, M.; BADALAMENTI, F.; VEGA FERNÁNDEZ, T.; CHEMELLO, R. Effects of fish feeding by snorkellers on the density and size distribution of fishes in a Mediterranean marine protected area. Marine Biology, v. 146, p. 1213–1222. 2005. MYRBERG, A.A.; FUIMAN, J.L.A. The Sensory World of Coral Reef Fishes. In: SALE, P.F. (ed) Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem. Academic Press, San Diego, California, 2002. p. 123–148. NAGELKERKEN, I; DORENBOSCH, M; VERBERK, W.C.E.P; COCERET DA LA MORINIERE, E; VAN DER VELDE, G. Day-night shifts of fishes between shallowwater biotopes of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and Lutjanidae. Marine Ecology Progress Series, v. 194, p. 55–64. 2000. NASH, R.D.M. The diel behaviour of small demersal fish on soft sediments on the west coast of Scotland using a variety of techniques: with special reference to Lesueurigobius friesii (Pisces; Gobiidae). Marine Ecology, v. 3, p. 161–178. 1982. PANKHURST, N.W. The relationship of ocular morphology to feeding modes and activity periods in shallow marine teleosts from New Zealand. Environmental Biology of Fishes, v. 26, n. 3, p. 201–211. 1989. PARTRIDGE, J.C. The colour sensitivity and vision of fishes. In: HERRING, P.J.; CAMPBELL, A.K.; WHITFIELD, M.; MADDOCK, L. (Eds.). Light and Life in the Sea. Cambridge University Press, 1990. p. 167–184. PIET, G.J.; GURUGE, W. Diel variation in feeding and vertical distribution of ten cooccurring fish species: consequences for resource partitioning. Environmental Biology of Fishes, v. 50, p. 293–307. 1997. POLUNIN, N.V.C; HARMELIN-VIVIEN; GALZIN, M.R. Contrasts in algal food processing among five herbivorous coral-reef fishes. Journal of Fish Biology, 47: 455– 465. 1995. RICKEL, S.; GENIN, A. Twilight transitions in coral reef fish: the input of lightinduced changes in foraging behaviour. Animal Behaviour, v. 70, n. 1, p. 133–144. 2005. SANTOS, M.; MONTEIRO, C.C.; GASPAR, M.B. Diurnal variations in the fish assemblage at an artificial reef. ICES Journal of Marine Science, v. 59, p. 32–35. 2002. TABORSKY, M; LIMBERGER, D. The activity rhythm of Blennius sanguinolentus Pallus: an adaptation to its food source? Pubblicazioni Della Stazione Zoologica di Napoli. Section I: Marine Ecology, v. 1, p. 143–153. 1980. TAVOLGA, W.N.; WODINSKY, J. Auditory capacities in fishes. Bulletin of the American Museum of Natural History, v. 126, p. 179-239. 1963. 77 TEIXEIRA, T.P.; NEVES, L.M.; ARAÚJO, F.G. Thermal impact of a nuclear power plant in a coastal area in southeastern Brazil: effects of heating and physical structure on benthic cover and fish communities. Hydrobiologia, v. 684, p. 161–175. 2012. THOMPSON, A.A.; MAPSTONE, B.D. Intra-versus inter-annual variation in counts of reef fishes and interpretations of long-term monitoring studies. Marine Ecology Progress Series, v. 232, p. 247–257. 2002. WARNER, R.R. Large mating aggregations and daily long-distance spawning migrations in the bluehead wrasse, Thalassoma bifasciatum. Environmental Biology of Fishes, v. 44, p. 337–345. 1995. WILLIAMS, D.M. Patterns and processes in the distribution of coral reef fishes. In: SALE, P.F. (ed) The ecology of fishes on coral reefs. Academic, San Diego, 1991. p. 437–474. WILLIS, T.J.; BADALAMENTI, F.; MILAZZO, M. Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology, v. 331, n. 1, p. 108–120. 2006. WOLTER, C.; FREYHOF, J. Diel distribution patterns of fishes in a temperate large lowland river. Journal of Fish Biology, v. 64, p. 632–642. 2004. YAHEL, R.; YAHEL, G.; BERMAN, T.; JAFFE, J.S.; GENIN, A. Diel pattern with abrupt crepuscular changes of zooplankton over a coral reef. Limnology and Oceanography, v. 50, n. 3, p. 930–944. 2005. ZEMKE-WHITE, W.L.; CHOAT, J.H.; CLEMENTS, K.C. A re-evaluation of the diel feeding hypothesis for marine herbivorous fishes. Marine Biology, v. 141, n. 3, p. 571– 579. 2002. ANDERSON, M.J.; MILLAR, R.B. Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. Journal of Experimental Marine Biology and Ecology, v. 305, n. 2, p. 191–221. 2004. ANDERSON, M.J.; ELLINGSEN, K.E.; MCARDLE, B.H. Multivariate dispersion as a measure of beta diversity. Ecology letters, v. 9, n. 6, p. 683–93. 2006. ANDERSON, M.J; WILLIS, T.J. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, v. 84, p. 511–525. 2003. ANDERSON, M.J.; GORLEY, R.N.; CLARKE, K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E, Plymouth, UK, 2008. 214 p. ARIAS-GONZÁLEZ, J.E.; DONE, T.J.; PAGE, C.A.; CHEAL, A.; KININMONTH, S.; GARZA-PÉREZ, J.R. Towards reef scape ecology: relating biomass and trophic structure of fish assemblages to habitat at Davies Reef, Australia. Marine Ecology Progress Series, v. 320, p. 29–41. 2006. BECKING, L.E.; CLEARY, D.F.R.; DE VOOGD, N.J.; RENEMA, W. DE BEER, M.; VAN SOEST, R.W.M.; HOEKSEMA, B.W. Beta diversity of tropical marine benthic assemblages in the Spermonde Archipelago, Indonesia. Marine Ecology, v. 27, p. 76–88. 2006. BORCARD, D.; LEGENDRE, P.; DRAPEAU, P. Partialling out the spatial component of ecological variation. Ecology, v. 73, p. 1045–1055. 1992. CHRISTIE, H.; JØRGENSEN, N.M.; NORDERHAUG, K.M. Bushy or smooth, high or low; importance of habitat architecture and vertical position for distribution of fauna on kelp. Journal of Sea Research, v. 58, p. 198–208. 2007. CLARKE, R.T.; GORLEY, R.N. Primer v6. PrimerE, Plymouth. 2006. CLARKE, K.R.; WARWICK, R.M. Change in marine communities. An approach to statistical analysis and interpretation. PRIMER-E Ltd., Plymouth, UK. 2001. COLWELL, R.K. EstimateS: statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and applications. Disponível em <http:// viceroy.eeb.uconn.edu/EstimateS>. Acesso em janeiro 2011. CRAMER, M.J.; WILLIG, M.R. Habitat heterogeneity, species diversity and null models. Oikos, v. 108, p. 209–218. 2005. 100 DIAS, C.; BONECKER, S.L.C. Long-term study of zooplankton in the estuarine system of Ribeira Bay, near a power plant (Rio de Janeiro, Brazil). Hydrobiologia, v. 614, n. 1, p. 65– 81. 2008. DORNELAS, M; CONNOLLY, S.R.; HUGHES, T.P. Coral reef diversity refutes the neutral theory of biodiversity. Nature, v. 400, p. 80–82. 2006. DOWNES, B.J.; LAKE, P.S.; SCHREIBER, E.S.G.; GLAISTER, A. Habitat structure and regulation of local species diversity in a stony, upland stream. Ecological Monographs, v. 68, p. 237–257. 1998. DRAY, S.; LEGENDRE, P.; PERES-NETO, P.R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling, v. 196, p. 483–493. 2006. ELLINGSEN, K.E.; GRAY, J.S. Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? Journal of Animal Ecology, v. 71, p. 373– 389. 2002. FRASCHETTI, S.; BIANCHI, C.N.; TERLIZZI, A.; FANELLI, G; MORRI, C.; BOERO, F. Spatial variability and human disturbance in shallow subtidal hard substrate assemblages: a regional approach. Marine Ecology Progress Series, v. 212, p. 1–12. 2001. GRAY, J.S. The measurement of marine species diversity, with an application to the benthic fauna of the Norwegian continental shelf. Journal of Experimental Marine Biology and Ecology, v. 250, p. 23–49. 2000. GUARNIERI, G.; TERLIZZI, A.; BEVILACQUA, S.; FRASCHETTI, S. Increasing heterogeneity of sensitive assemblages as a consequence of human impact in submarine caves. Marine Biology, v. 159, n. 5, p. 1155–1164. 2012. HARBORNE, A.R.; MUMBY, P.J.; FERRARI, R. The effectiveness of different meso-scale rugosity metrics for predicting intra-habitat variation in coral-reef fish assemblages. Environmental Biology of Fishes, v. 94, n. 2, p. 431–442. 2011. HARBORNE, A.R.; MUMBY, P.J.; ZYCHALUK, K.; HEDLEY, J.D.; BLACKWELL, P.G. Modeling the beta diversity of coral reefs. Ecology, v. 87, n. 11, p. 2871–81. 2006. HAUZY, C.; TULLY, T.; SPATARO, T.; PAUL, G.; ARDITI, R. Spatial heterogeneity and functional response: an experiment in microcosms with varying obstacle densities. Oecologia, v. 163, n. 3, p. 625–36. 2010. HAYWICK, D.W.; MUELLER, E.M. Sediment retention in encrusting Palythoa spp. – a biological twist to a geological process. Coral Reefs, v. 16, p. 39–46. 1997. HENRY, L.A.; DAVIES, A.J.; ROBERTS, M.J. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs, v. 29, n. 2, p. 427–436. 2009. HEWITT, J.E.; THRUSH, S.E.; HALLIDAY, J.; DUFFY, C. The importance of small-scale habitat structure for maintaining beta diversity. Ecology, v. 86, p. 1619–1626. 2005. HEWITT, J.; THRUSH, S.; LOHRER, A.; Townsend, M. A latent threat to biodiversity: consequences of small-scale heterogeneity loss. Biodiversity and Conservation, v. 19, n. 5, p. 1315–1323. 2010. 101 IGNACIO, B.L.; JULIO, L.M.; JUNQUEIRA, A.O.R.; FERREIRA-SILVA, M.A.G. Bioinvasion in a Brazilian bay: filling gaps in the knowledge of southwestern Atlantic biota. PloS one, v. 5, n. 9, p. 1–9. 2010. Instituto Brasileiro de Geografia e Estatística. Geografia do Brasil–Região Sudeste. Instituto Brasileiro de Geografia e Estatística, v. 3, p. 1–89. 1977. HEINO, J.; GRÖNROOS, M.; ILMONEN, J.; KARHU, T.; NIVA, M.; PAASIVIRTA, L. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science, v. 32, p. 142–154. LAWTON, J.H. Are there general laws in ecology? Oikos, v. 84, p. 177–192. 2013. 1999. LEGENDRE, P.; BORCARD, D.; PERES-NETO, P.R. Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, v. 75, p. 435– 450. 2005. LOREAU, M. Biodiversity and ecosystem functioning: recent theoretical advances. Oikos, v. 91, p. 3–17. 2000. KOHLER, K.E.; GILL, S.M. Coral Point Count with Excel extensions (CPCe): Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Computers & Geosciences, v. 32, p. 1259–1269. 2006. MACARTHUR, R.H. Patterns of species diversity. Biological Review, v. 40, p. 510–533. 1965. MEDEIROS, P.R.; GREMPEL, R.G.; SOUZA, A.T.; ILARRI, M.I.; ROSA, R.S. Nonrandom reef use by fishes at two dominant zones in a tropical, algal-dominated coastal reef. Environmental Biology of Fishes, v. 87, p. 237–246. 2010. MUELLER, E.; HAYWICK, D.W. Sediment assimilation and calcification by the Western Atlantic reef zoanthid, Palythoa caribaeorum. Bulletin de l'Institut Oceanographique, v. 14, p. 89–100. 1995. NOGUEIRA, C.R.; BONECKER, A.C.T.; BONECKER, S.L.C.; SANTOS, C.C. Studies of zooplankton near the Nuclear Power Plant—Angra I. Preoperational conditions (RJ-Brazil), p. 3221–3233. In MAGOON, O. (ed.), Coastal Zone ‘91—Beach, v. 4. New York: American Society of Civil Engineering, 1991. PÉREZ-MATUS, A.; SHIMA, J.S. Disentangling the effects of macroalgae on the abundance of temperate reef fishes. Journal of Experimental Marine Biology and Ecology, v. 388, n. 1-2, p. 1–10. 2010. PERRY, C.T.; LARCOMBE, P. Marginal and non-reef-building coral environments. Coral Reefs, v. 22, n. 4, p. 427–432. 2003. RODRÍGUEZ-ZARAGOZA, F.A.; CUPUL-MAGAÑA, A.L.; GALVÁN-VILLA, C.M.; RÍOS-JARA, E.; ORTIZ, M.; ROBLES-JARERO, E.G.; LÓPEZ-URIARTE, E.; ARIASGONZÁVEZ, J.E. Additive partitioning of reef fish diversity variation: a promising marine biodiversity management tool. Biodiversity and Conservation, v. 20, n. 8, p. 1655–1675. 2011. 102 STENECK, R.S.; GRAHAM, M.H.; BOURQUE, B.J.; CORBETT, D.; ERLANDSON, J.M.; ESTES, J.A.; TEGNER, M.J. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation, v. 29, p. 436–459. 2002. TOOHEY, B.D.; KENDRICK, G.A.; HARVEY, E.S. Disturbance and reef topography maintain high local diversity in Ecklonia radiata kelp forests. Oikos, v. 116, p. 1618–1630. 2007. VEECH, J.A.; CRIST, T.O.; SUMMERVILLE, K.S. Intraspecific aggregation decreases local species diversity of arthropods. Ecology, v. 84, p. 3376–3383. 2003. VOOGD, N; DE CLEARY, D.F.R.; HOEKSEMA, B.W., NOOR, A.; VAN SOEST, R.W.M. Sponge beta diversity in the Spermonde Archipelago, SW Sulawesi, Indonesia. Marine Ecology Progress Series, v. 309, p. 131–142. 2006. WHITTAKER, R.H. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, v. 30, p. 279–338. 1960.por
dc.rightsAcesso Abertopor
dc.subjectictiofaunapor
dc.subjectmudanças ambientais extremaspor
dc.subjectciclo diáriopor
dc.subjectdiversidade betapor
dc.subjectichthyofaunaeng
dc.subjectextreme environmental changeseng
dc.subjectdiel cycleeng
dc.subjectbeta diversityeng
dc.subject.cnpqEcologiapor
dc.titleEstrutura e diversidade das assembleias de peixes recifais na Baía da Ilha Grande: importância de variáveis físicas, da estrutura do habitat e variações temporais de curto prazopor
dc.title.alternativeStructure and diversity of rocky reef fish assemblages of the Ilha Grande bay: importance of physical variables, habitat structure and short term temporal changeseng
dc.typeDissertaçãopor
Appears in Collections:Doutorado em Biologia Animal

Files in This Item:
File Description SizeFormat 
2013 - Leonardo Mitrano Neves.pdf Leonardo Mitrano Neves2.65 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.