???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/2173
Full metadata record
DC FieldValueLanguage
dc.creatorFerreira, Leandro Martins-
dc.creator.Latteshttp://lattes.cnpq.br/6997544328294455por
dc.contributor.advisor1Santos, Leandro Azevedo-
dc.contributor.advisor-co1Souza, Sonia Regina de-
dc.contributor.referee1Santos, Leandro Azevedo-
dc.contributor.referee2Santos, André Marques dos-
dc.contributor.referee3Rossiello, Roberto Oscar Pereyra-
dc.contributor.referee4Martins, Gilberto Sachetto-
dc.contributor.referee5Cabral, Luiz Mors-
dc.date.accessioned2018-01-24T17:49:25Z-
dc.date.issued2017-02-22-
dc.identifier.citationFERREIRA, Leandro Martins. Características morfológicas, fisiológicas e transcriptoma em variedades de arroz (Oryza sativa L.) contrastantes quanto à tolerância ao estresse hídrico. 2017. 110 f. Tese (Doutorado em Agronomia - Ciência do Solo). Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ. 2017.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/2173-
dc.description.resumoDentre os estresses abióticos que podem limitar o crescimento das culturas agrícolas, a seca é considerada um dos principais, sendo capaz de reduzir consideravelmente a produção global de alimentos. O arroz é uma das mais importantes culturas agrícolas do mundo e sua produção demanda grande quantidade de água, pois é uma espécie extremamente sensível ao déficit hídrico. Portanto, a obtenção de plantas de arroz que lidam com o estresse hídrico, sem redução significativa de produtividade é um desafio para os programas de melhoramento atuais. Este trabalho teve como objetivos: (i) identificar variedades de arroz de sequeiro contrastantes quanto à tolerância ao estresse hídrico por meio da avaliação de características morfológicas e fisiológicas, (ii) analisar parâmetros radiculares que possam explicar a diferença entre variedades tolerantes e sensíveis ao estresse hídrico e, (iii) identificar novos alvos biotecnológicos envolvidos com essa tolerância por meio da análise do perfil de transcritos nas variedades de arroz contrastantes. Foram realizados seis experimentos, sendo dois em casa de vegetação e quatro em câmara de crescimento. O delineamento experimental utilizado foi o inteiramente casualizado. O primeiro experimento iniciou com dez variedades de arroz submetidas a condição controle e estresse hídrico durante o período reprodutivo. As variedades contrastantes foram selecionadas com base em características morfológicas e fisiológicas analisadas. Os experimentos II a IV foram realizados a fim de correlacionar a tolerância ao estresse com o desenvolvimento e morfologia do sistema radicular. O experimento V foi realizado para avaliar a regulação de genes relacionados a tolerância ao estresse hídrico e o experimento VI teve como objetivo analisar a expressão diferencial de genes por meio da técnica de RNA-seq em raízes de arroz. Os dados obtidos dos componentes de produtividade, índices de tolerância ao estresse e análise multivariada das características morfológicas e fisiológicas permitiram identificar as variedades Catetão e Piauí como as mais tolerantes ao estresse hídrico, e Quebra Cacho e Mira como as mais sensíveis. Foi observado que a tolerância ao estresse hídrico está correlacionada com o menor ângulo radicular, aumento da densidade e emissão de raízes laterais em condições de déficit hídrico na variedade Catetão. Além disso, essa variedade mostra indução rápida e elevados níveis de expressão de genes e fatores de transcrição relacionados à tolerância ao estresse hídrico em arroz. Por meio do sequenciamento do RNA foi possível identificar diversos genes com potencial para serem utilizados em programas de melhoramento visando o aumento da tolerância ao estresse hídrico em arroz.por
dc.description.abstractAmong the abiotic stress, drought is a major environmental stress seriously limiting plant growth and crop productivity. Rice is one of the most important staple food crops in the world and requires a larger quantity of water to produce, once it is a crop extremely sensitive to drought stress. For this reason, to obtain rice plants that cope with drought stress without major reduction in productivity is the challenge for breeding programs nowadays. This work aimed: (i) identify upland rice varieties with contrasting drought tolerance through the evaluation of morphological and physiological traits, (ii) analyse root parameters which could explain the differences between tolerant and sensitive varieties to the drought stress and, (iii) identify new biotechnological targets related with the tolerance through transcript profile analysis in the contrasting varieties. Six experiments were performed, two in greenhouse and four in growth chamber conditions. The experimental design adopted was completely randomized. The first experiment started with ten rice varieties submitted to control and stress conditions during the reproductive stage. The contrasting varieties were selected based on morphological and physiological traits. Experiments from II to IV aimed to correlate the tolerance to the drought stress with the root development and morphology. Experiment V aimed to evaluate the regulation of genes related to the drought tolerance and the experiment VI aimed to analyse the differential expression of genes through the RNAseq analysis in rice roots. Data obtained from the productivity components, tolerance index and multivariate analysis through the evaluation of morphological and physiological traits allowed to identify Catetão and Piauí variety as the most tolerant and Quebra Cacho and Mira as the most sensitive. Drought tolerance was correlated with a lower root angle and increase in the root density and emission of lateral roots by Catetão variety during drought stress. Moreover, Catetão variety has showed higher expression levels and early induction of genes and transcription factors related with drought tolerance. The RNAseq analysis allowed to identify several potential genes which can be used in future breeding programs aimimg the improvement of drought tolerance in rice.eng
dc.description.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2018-01-24T17:49:23Z No. of bitstreams: 1 2017 - Leandro Martins Ferreira.pdf: 2738374 bytes, checksum: a6ccde64b30f6cd52122b9030ab6c92e (MD5)eng
dc.description.provenanceMade available in DSpace on 2018-01-24T17:49:25Z (GMT). No. of bitstreams: 1 2017 - Leandro Martins Ferreira.pdf: 2738374 bytes, checksum: a6ccde64b30f6cd52122b9030ab6c92e (MD5) Previous issue date: 2017-02-22eng
dc.description.sponsorshipCAPESpor
dc.description.sponsorshipFaperjpor
dc.description.sponsorshipCNPqpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/6013/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/20774/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/27075/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/33494/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/39926/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/46308/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/52694/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/59126/2017%20-%20Leandro%20Martins%20Ferreira.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesABDI, N.; DARVISHZADEH, R.; MALEKI HATAMI, H. Effective selection criteria for screening drought tolerant recombinant inbred lines of sunflower. Genetika, v. 45, n. 1, p. 153-166, 2013. AFGAN, E.; BAKER, D.; VAN DEN BEEK, M.; BLANKENBERG, D.; BOUVIER, D.; ČECH, M.; GRUNING, B. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic acids research, v. 1, n.1, p.1-8, 2016. AHMADI, N.; AUDEBERT, A.; BENNETT, M. J.; BISHOPP, A.; DE OLIVEIRA, A. C.; COURTOIS, B.; GUIDERDONI, E. The roots of future rice harvests. Rice, v. 7, n. 1, p. 1, 2014. ALI, M. L.; LUETCHENS, J.; NASCIMENTO, J.; SHAVER, T. M.; KRUGER, G. R.; LORENZ, A. J. Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant and Soil, v. 397, n. 1-2, p. 213-225, 2015. AMBAVARAM, M. M.; BASU, S.; KRISHNAN, A.; RAMEGOWDA, V.; BATLANG, U.; RAHMAN, L.; BAISAKH, N.; PEREIRA, A. Coordinated regulation of photosynthesis in rice increases yield and tolerance to environmental stress. Nature communications, v. 5, n. 1, p. 1-14, 2014. ANDERS, S.; PYL, P. T.; HUBER, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics, v. 31, n. 2, p. 166-169, 2014. ANDREWS, S. FastQC: A quality control tool for high throughput sequence data. Reference Source, 2010. Disponível em: http://www.bioinformatics.babraham.ac.uk/projects/fastqc. Acessado em: 24/11/2016. ARAKI, H.; MORITA, S.; TATSUMI, J.; IIJIMA, M. Physiol-morphological analysis on axile root growth in upland rice. Plant production science, v. 5, n. 4, p. 286-293, 2002. ARAÚJO, Osmário José Lima de. Caracterização do potencial produtivo e da relação entre produtividade e teor de proteína bruta dos grãos de variedades locais de arroz. 2014. 44f. Tese (Doutorado em Agronomia – Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. ARAUS, J. L.; SLAFER, G. A.; REYNOLDS, M. P.; ROYO, C. Plant breeding and drought in C3 cereals: what should we breed for? Annals of Botany, v. 89, n. 7, p. 925-940, 2002. ARNON, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant physiology, v. 24, n. 1, p. 1, 1949. BABU, R. C. Breeding for drought resistance in rice: an integrated view from physiology to genomics. Electronic Journal of Plant Breeding, v.1, n. 4, p. 1133-1141, 2010. BAJJI, M.; KINET, J. M.; LUTTS, S. The use of electrolyte leakage method for assessing cell membrane stability as water stress tolerance test in durum wheat. Plant Growth Regulation. v. 36, 61–70, 2002. BARBAZUK, W. B., EMRICH, S. J., CHEN, H. D., LI, L.; SCHNABLE, P. S. SNP discovery via 454 transcriptome sequencing. The plant journal, v. 51, n. 5, p. 910-918, 2007. BARRS, H. D. Determination of water deficits in plant tissues. In: KOZLOWSKI, T. T. (Ed.) Water deficits and plant growth, New York, Academic Press, 1968, p. 235-368. BASU, S.; ROYCHOUDHURY, A.; SAHA, P. P.; SENGUPTA, D. N. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, v. 60, n. 1, p. 51-59, 2010. BATES, L. S.; WALDREW, R. P.; TEARE, I. D. Rapid determination of free proline for water-stress studies. Plant and Soil, v. 39, n.1, p. 205-207, 1973. BEERS, R. F.; SIZER, I. W. A spectrophotometric method for measuring the break-down of hydrogen peroxide by catalase. Journal of Biology Chemical, v. 195, n. 1, p. 133–140, 1952. BEGCY, K.; MARIANO, E. D.; GENTILE, A.; LEMBKE, C. G.; ZINGARETTI, S. M.; SOUZA, G. M.; MENOSSI, M. A novel stress-induced sugarcane gene confers tolerance to drought, salt and oxidative stress in transgenic tobacco plants. PloS one, v. 7, n. 9, p. e44697, 2012. BENJAMINI, Y.; HOCHBERG, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society, v. 57, n. 1, p. 289-300, 1995. BEVITORI, R.; OLIVEIRA, M. B.; GROSSI-DE-SA, M. F.; LANNA, A. C.; DA SILVEIRA, R. D.; PETROFEZA, S. Selection of optimized candidate reference genes for qRT-PCR normalization in rice (Oryza sativa L.) during Magnaporthe oryzae infection and drought. Genetics and Molcular Research, v. 13, n. 4, p. 9795-9805, 2014. BIENERT, G. P.; CHAUMONT, F. Plant Aquaporins: Roles in Water Homeostasis, Nutrition, and Signaling Processes. In: GEISLER, M.; VENEMA, K. Transporters and Pumps in Plant Signaling. New York. Ed. Springer, 2010, p. 3-36. BISCARINI, F.; COZZI, P.; CASELLA, L.; RICCARDI, P.; VATTARI, A.; ORASEN, G.; CATTIVELLI, L. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions. PloS one, v. 11, n. 5, p. 1-28, 2016. BLUM, A. Drought resistance – is it really a complex trait? Functional Plant Biology, v. 38, n. 10, p. 753-757, 2011. BOGUSKI, M. S.; TOLSTOSHEV, C. M.; BASSETT, D. E. JR. Gene discovery in dbEST. Science, v. 265, n. 5181, p. 1993-1994, 1994. BOLGER, A. M.; LOHSE, M.; USADEL, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, v. 30, n. 15, p. 2114-2120, 2014. BOUMAN, B. A. M.; HUMPHREYS, E.; TUONG, T. P.; BARKER, R. Rice and water. Advances in agronomy, v. 92, n. 1, p. 187-237, 2007. BOUMAN, B. A. M.; PENG, S.; CASTAÒEDA, A. R.; VISPERAS, R. M. Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, v. 74, n. 2, p. 87-105, 2005. BOYER, J.S. Plant productivity and environment. Science, v. 218, n. 4571, p. 443-448, 1982. BRADFORD, M. M. Rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry, v.72, p.248-254, 1976. BRETON, G.; DANYLUK, J.; CHARRON, J. B. F.; SARHAN, F. Expression profiling and bioinformatic analyses of a novel stress-regulated multispanning transmembrane protein family from cereals and Arabidopsis. Plant physiology, v. 132, n. 1, p. 64-74, 2003. BROZYNSKA, M.; FURTADO, A.; HENRY, R. J. Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant biotechnology journal, v. 14, n. 1, p. 1070-1085, 2015. BURSSENS, S.; HIMANEN, K.; VAN DE COTTE, B.; BEECKMAN, T.; VAN MONTAGU, M.; INZÉ, D.; VERBRUGGEN, N. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta, v. 211, n. 5, p. 632-640, 2000. CAI, J.; ZENG, Z.; CONNOR, J. N.; HUANG, C. Y.; MELINO, V.; KUMAR, P.; MIKLAVCIC, S. J. RootGraph: a graphic optimization tool for automated image analysis of plant roots. Journal of experimental botany. v. 66, n. 21, p. 6551-6562, 2015. CASTILLO, E. G.; TUONG, T. P.; SINGH, U.; INUBUSHI, K.; PADILLA, J. Drought response of dry-seeded rice to water stress timing and N-fertilizer rates and sources. Soil science and plant nutrition, v. 52, n. 4, p. 496-508, 2006. CHA-UM, S.; SAMPHUMPHUANG, T.; KIRDMANEE, C. Glycinebetaine alleviates water deficit stress in indica rice using proline accumulation, photosynthetic efficiencies, growth performances and yield attributes. Australian Journal of Crop Science, v. 7, n. 2, p. 213-218, 2013. CHA-UM, S.; YOOYONGWECH, S.; SUPAIBULWATANA, K. Water deficit stress in the reproductive stage of four indica rice (Oryza sativa L.) genotypes. Pakistan Journal of Botany, v. 42, n. 5, p. 3387-3398, 2010. CHEN, X.; CUI, Z.; FAN, M.; VITOUSEK, P.; ZHAO, M.; MA, W.; DENG, X. Producing more grain with lower environmental costs. Nature, v. 514, n. 7523, p. 486-489, 2014. CHEN, X.; SHI, J.; HAO, X.; LIU, H.; SHI, J.; WU, Y.; MAO, C. OsORC3 is required for lateral root development in rice. The Plant Journal, v. 74, n. 2, p. 339-350, 2013. CHOUKAN, R. T.; TAHERKHANI, M. R.; GHANNADHA, A.; KHODARAHMI, M. Evaluation of drought tolerance maize lines by drought stress tolerance indices. Iranian Journal of Agricultural Science, v. 8, n. 1, p. 2000-2010, 2006. CLOONAN, N.; FORREST, A. R.; KOLLE, G.; GARDINER, B. B.; FAULKNER, G. J.; BROWN, M. K.; TAYLOR, D. F.; STEPTOE, A. L.; WANI, S.; BETHEL, G.; ROBERSTSON, A. J.; PERKINS, A. C.; BRUCE, S. J.; LEE, C. C.; RANADE, S. S.; PECKHAM, H. E.; MANNING, J. M.; MCKERNAN, K. J.; GRIMMOND, S. M. Stem cell transcriptome profiling via massive scale mRNA sequencing. Nature methods, v. 5, n. 7, p. 613-619, 2008. CLOUGH, S. J.; BENT, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, v. 16, n. 6, p. 735–743, 1998. COCHRAN, W. G. The distribution of the largest of a set of estimated variances as a fraction of their total. Annals of Eugenics, v. 22, n. 11, p. 47-52, 1947. COMAS, L. H.; BECKER, S. R.; VON MARK, V. C.; BYRNE, P.F.; DIERIG, D. A. Root traits contributing to plant productivity under drought. Ecophysiology of root systems-environment interaction, v. 5, n. 4, p.1-18, 2014. CONAB. Acompanhamento de safra brasileira: grãos, sexto levantamento, março 2013. Companhia Nacional de Abastecimento – Brasília: Conab, 25p. 2013. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_03_07_10_39_19_levantamento_safras_graos_6.pdf. Acessado em: 26/11/2016. CORRÊA, L. G. G.; RIAÑO-PACHÓN, D. M.; SCHRAGO, C. G.; DOS SANTOS, R. V.; MUELLER-ROEBER, B.; VINCENTZ, M. The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS One, v. 3, n. 8, p. e2944, 2008. CRAMER, G. R.; URANO, K.; DELROT, S.; PEZZOTTI, M.; SHINOZAKI, K. Effects of abiotic stress on plants: a systems biology perspective. BMC plant biology, v. 11, n. 1, p. 163, 2011. CRUZ, C. D.; CARNEIRO, P. C. S. Modelos biométricos aplicados ao melhoramento genético. Volume 2. Viçosa: Editora UFV, 2003. 585 p. DALAL, V. K.; TRIPATHY, B. C. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, cell & environment, v. 35, n. 9, p. 1685-1703, 2012. DARVISHZADEH, R.; PIRZAD, A.; HATAMI-MALEKI, H.; POORMOHAMMAD-KIANI, S.; SARRAFI, A. Evaluation of the reaction of sunflower inbred lines and their F1 hybrids to drought conditions using various stress tolerance indices. Spanish Journal of Agricultural Research, v. 8, n. 4, p. 1037-1046, 2010. DAVID, L.; HUBER, W.; GRANOVSKAIA, M.; TOEDLING, J.; PALM, C. J.; BOFKIN, L.; JONES, T.; DAVIS, R.W.; STEINMETZ, L. M. A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences, v. 103, n. 14, p. 5320-5325, 2006. DE DATTA, S. K.; MALABUYOC, J. A.; ARAGON, E. L. A field screening technique for evaluating rice germplasm for drought tolerance during the vegetative stage. Field Crops Research, v. 19, n. 2, p. 123-134, 1988. DEMIRAL, T.; TURKAN, I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, v. 53, n. 3, p. 247-257, 2005. DING, L.; GAO, C.; LI, Y.; LI, Y.; ZHU, Y.; XU, G.; GUO, S. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, v. 234, n. 1, p. 14-21, 2015. DOERNER, P. W. Cell cycle regulation in plants. Plant physiology, v. 106, n. 3, p. 823, 1994. DONALD, C. M.; HAMBLIN, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Advances in Agronomy, v. 28, n. 1, p. 361-405, 1976. DUBOUZET, J. G.; SAKUMA, Y.; ITO, Y.; KASUGA, M.; DUBOUZET, E. G.; MIURA, S.; YAMAGUCHI‐SHINOZAKI, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought‐, high‐salt‐and cold‐responsive gene expression. The Plant Journal, v. 33, n. 4, p. 751-763, 2003. DYSON T. World food trends and prospects to 2025.Proceedings of the National Academy of Sciences, USA v. 96, p. 5929–5936, 1999. EMBRAPA – Cultivo do arroz irrigado no Brasil. Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoBrasil/cap01.htm. Acessado em: 23/07/2013. EVENSON, R. E.; GOLLIN, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science, v. 300, n. 5620, p. 758-762, 2003. 2015. FAGERIA, N. K.; MOREIRA, A. The Role of Mineral Nutrition on Root Growth of Crop Plants. Advances in Agronomy, v. 110, n. 1, p. 251-331, 2011. FAO - Food and Agriculture Organization of the United Nations. Disponível em: http://www.fao.org/nr/water/issues/scarcity.html. Acessado em 26/01/2017. 2015. FAO - Food and Agriculture Organization of the United Nations. FAOSTAT database: agriculture production. Rome: Food and Agriculture Organization of the United Nations. Disponível em: http://www.fao.org/home/en/. Acessado em: 30/12/2016. 2016. FAO - Food and Agriculture Organization of the United Nations. Food outlook: Biannual report on global food markets. Disponível em: http://www.fao.org/3/a-i5703e.pdf. Acessado em: 26/01/2017. 2016. FAO - Food and Agriculture Organization of the United Nations. Global agriculture towards 2050. High Level Expert Forum-How to feed the world 2050, p. 1–4, 2009. FAO - Food and Agriculture Organization of the United Nations. The State of Food Insecurity in the World. Disponível em: http://www.fao.org/docrep/016/i3027e/i3027e.pdf Acessado em 04/08/2013. 2012. FEDURCO, M.; ROMIEU, A.; WILLIAMS, S.; LAWRENCE, I.; TURCATTI, G. BTA, a novel reagent for DNA attachment on glass and efficient generation of solid-phase amplified DNA colonies. Nucleic acids research, v. 34, n. 3, p. e22-28, 2006. FENG, F.; XU, X.; DU, X.; TONG, H.; LUO, L.; MEI, H. Assessment of drought resistance among wild rice accessions using a protocol based on single-tiller propagation and PVC-tube cultivation. Australian Journal of Crop Science, v. 6, n. 7, p. 1204, 2012. FERNANDEZ, G. C. J. Effective selection criteria for assessing plant stress tolerance. In: Proceedings of the international symposium on adaptation of vegetative and other food crops in temperature and water stress. 1992. v. 13, p. 257-270. FERREIRA, D. F. Análises estatísticas por meio do Sisvar para Windows versão 4.0. In. REUNIÃO ANUAL DA REGIÃO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA. Anais. São Carlos: UFSCar, p. 255-258, 2000. FISCHER, K. S.; LAFITTE, S.; FUKAI, S.; ATLIN, G.; HARDY, B. Breeding rice for drought-prone environments. International Rice Research Institute, Los Baños, Philippines, 2003. 98p. FISCHER, K. S.; WOOD, G. Breeding and selection for drought tolerance in tropical maize. In: Proceedings of the Symposium on Principles and methods in crop improvement for drought resistance with emphasis on rice. IRRI, Philippines. 1981. p. 47-58. FISCHER, R. A.; MAURER, R. Drought resistance in spring wheat cultivars. Australian Journal of Agricultural Research, v. 29, n. 5, p. 897-912, 1978. FONSECA, J. R.; VIEIRA, E. H. N.; PEREIRA, J. A.; DOS ANJOS CUTRIM, V. Descritores morfoagronômicos e fenológicos de cultivares tradicionais de arroz coletados no Maranhão. Revista Ceres, v. 51, n. 293, p. 45-56, 2004. FOSTER, J. G.; HESS, J. L. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen, Plant Physiology, v. 66, p. 482-487, 1980. FUKAI, S.; COOPER, M. Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research, v. 40, n. 2, p. 67-86, 1995. GAO, Y.; XU, H.; SHEN, Y.; WANG, J. Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant molecular biology, v. 81, n. 4-5, p. 363-378, 2013. GERBEAU, P.; AMODEO, G.; HENZLER, T.; SANTONI, V.; RIPOCHE, P.; MAUREL, C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. The Plant Journal, v. 30, n. 1, p. 71-81, 2002. GOMES, M. A. F. A água nossa de cada dia. Revista Panorama Rural, n. 122, p. 44 – 48, 2009. Disponível em: http://www.eco21.com.br/textos/textos.asp?ID=1938. Acessado em: 15/03/2015. GOWDA, V. R.; HENRY, A.; YAMAUCHI, A.; SHASHIDHAR, H. E.; SERRAJ, R. Root biology and genetic improvement for drought avoidance in rice. Field Crops Research, v. 122, n. 1, p.1-13, 2011. GOYA, R.; MEYER, I. M.; MARRA, M. A. Applications for high-throughput sequencing. In: RODRÍGUEZ-EZPELETA, N.; HACKENBERG, M.; ARANSAY, A. M. Bioinformatics for high throughput sequencing. Springer, 2012, p. 27-54. GRONDIN, A.; MAULEON, R.; VADEZ, V.; HENRY, A. Root aquaporins contribute to whole plant water fluxes under drought stress in rice (Oryza sativa L.). Plant, cell & environment, v. 39, n. 2, p. 347-365, 2016. GUENDOUZ, A.; GUESSOUM, S.; HAFSI, M. Investigation and selection index for drought stress in durum wheat (Triticum durum Desf.) under Mediterranean condition. Electronic Journal of Plant Breeding, v. 3, n. 2, p. 733-740, 2012. HAAKE, V.; COOK, D.; RIECHMANN, J.; PINEDA, O.; THOMASHOW, M. F.; ZHANG, J. Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant physiology, v. 130, n. 2, p. 639-648, 2002. HEATH, R. L.; PACKER, L. Photoperoxidation in isolated chloroplasts. I. Kinetics and Stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, v. 125, p.189-198, 1968. HENRY, A. IRRI’s drought stress research in rice with emphasis on roots: accomplishments over the last 50 years. Plant Root, v. 7, p. 5-19, 2013. HENRY, A.; CAL, A. J.; BATOTO, T. C.; TORRES, R. O.; SERRAJ, R. Root attributes affecting water uptake of rice (Oryza sativa) under drought. Journal of Experimental Botany, v. 63, n. 13, p. 4751-4763, 2012. HENRY, A.; GOWDA, V. R.; TORRES, R. O.; MCNALLY, K. L.; SERRAJ, R. Variation in root system architecture and drought response in rice (Oryza sativa): phenotyping of the OryzaSNP panel in rainfed lowland fields. Field Crops Research, v. 120, n. 2, p. 205-214, 2011. HERDER, G. D.; VAN ISTERDAEL, G.; BEECKMAN, T.; DE SMET, I. The roots of a new green revolution. Trends in plant science, v. 15, n. 11, p. 600-607, 2010. HOAGLAND, D. R.; ARNON, D. I. The water-culture method for growing plants without soil. California Agricultural of Experimental Station Bull, v. 347, p. 1-32, 1950. HORN, R.; PAULSEN, H. Folding in vitro of light-harvesting chlorophyll a/b protein is coupled with pigment binding. Journal of molecular biology, v. 318, n. 2, p. 547-556, 2002. HOSHIDA, H.; TANAKA, Y.; HIBINO, T.; HAYASHI, Y.; TANAKA, A.; TAKABE, T.; TAKABE, T. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant molecular biology, v. 43, n. 1, p. 103-111, 2000. HOSSAIN, A. B. S.; SEARS, R. G.; COX, T. S.; PAULSEN, G. M. Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, v. 30, n. 3, p. 622-627, 1990. HU, H.; XIONG, L. Genetic engineering and breeding of drought-resistant crops. Annual review of plant biology, v. 65, p. 715-741, 2014. HUANG, X. Y.; CHAO, D. Y.; GAO, J. P.; ZHU, M. Z.; SHI, M.; LIN, H. X. A. previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes & Development, v. 23, n. 15, p. 1805-1817, 2009. IBGE. Indicadores IBGE – Estatística da produção agrícola 2016. Disponível em: ftp://ftp.ibge.gov.br/Producao_Agricola/Fasciculo_Indicadores_IBGE/estProdAgr_201601.pdf. Acessado em: 26/01/2017. INZÉ, D.; DE VEYLDER, L. Cell cycle regulation in plant development. Annual Review of Genetics, v. 40, n. 1, p. 77-105, 2006. IRRI, I. Standard evaluation system for rice. International Rice Research Institute, Philippine, 2002. Disponível em: http://www.knowledgebank.irri.org/images/docs/rice-standard-evaluation-system.pdf. Acessado em: 12/04/2014. JAIN, M.; MATHUR, G.; KOUL, S.; SARIN, N. Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, v. 20, n. 5, p. 463-468, 2001. JAIN, M.; NIJHAWAN, A.; TYAGI, A. K.; KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and biophysical research communications, v. 345, n. 2, p. 646-651, 2006. JAN, A.; MARUYAMA, K.; TODAKA, D.; KIDOKORO, S.; ABO, M.; YOSHIMURA, E.; YAMAGUCHI-SHINOZAKI, K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant physiology, v. 161, n. 3, p. 1202-1216, 2013. JEONG, J. S.; KIM, Y. S.; BAEK, K. H.; JUNG, H.; HA, S. H.; DO CHOI, Y. KIM, M.; REUZEAU, C.; KIM, J. K. Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiology, v. 153, n. 1, p. 185-197, 2010. JI, K.; WANG, Y.; SUN, W.; LOU, Q.; MEI, H.; SHEN, S.; CHEN, H. Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. Journal of plant physiology, v. 169, n. 4, p. 336-344, 2012. JNANDABHIRAM, C.; SAILEN PRASAD, B. Water stress effects on leaf growth and chlorophyll content but not the grain yield in traditional rice (Oryza sativa Linn.) genotypes of Assam, India II. Protein and proline status in seedlings under PEG induced water stress. American Journal of Plant Sciences, v. 3, n. 7, p. 971-980, 2012. JOHANSSON, I.; KARLSSON, M.; SHUKLA, V. K.; CHRISPEELS, M. J.; LARSSON, C.; KJELLBOM, P. Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. The Plant Cell Online, v. 10, n. 3, p. 451-459, 1998. JULIANO, B. O.; BECHTEL, D. B. The rice grain and its gross composition. In: JULIANO, B. O. (ed.). Rice Chemistry and Technology. American Association of Cereal Chemistry. Minnesota, 1985. p. 77-107. JUNIOR, É. B.; ROSSIELLO, R. O. P.; SILVA, R. V. M. M.; RIBEIRO, R. C.; MORENZ, M. J. F. Um novo clorofilômetro para estimar os teores de clorofila em folhas do capim Tifton 85. Ciência Rural, v. 42, n. 12, p. 2241-2245, 2012. KAMOSHITA, A.; RODRIGUEZ, R.; YAMAUCHI, A.; WADE, L. Genotypic variation in response of rainfed lowland rice to prolonged drought and rewatering. Plant Production Science, v. 7, n. 4, p. 406-420, 2004. KANO, M.; INUKAI, Y.; KITANO, H.; YAMAUCHI, A. Root plasticity as the key root trait for adaptation to various intensities of drought stress in rice. Plant and Soil, v. 342, n. 1-2, p. 117-128, 2011. KARABA, A.; DIXIT, S.; GRECO, R.; AHARONI, A.; TRIJATMIKO, K. R.; MARSCH-MARTINEZ, N.; PEREIRA, A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences, v. 104, n. 39, p. 15270-15275, 2007. KATO, Y.; ABE, J.; KAMOSHITA, A.; YAMAGISHI, J. Genotypic variation in root growth angle in rice (Oryza sativa L.) and its association with deep root development in upland fields with different water regimes. Plant and Soil, v. 287, n. 1-2, p.117-129, 2006. KAWAHARA, Y.; DE LA BASTIDE, M.; HAMILTON, J. P.; KANAMORI, H.; MCCOMBIE, W. R.; OUYANG, S.; CHILDS, K. L. Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice, v. 6, n. 4, p. 1-10, 2013. KELLEY, L. A.; GARDNER, S. P.; SUTCLIFFE, M. J. An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Engineering. v.11, p.1063-1065, 1996. KHONG, G. N.; RICHAUD, F.; COUDERT, Y.; PATI, P. K.; SANTI, C.; PÉRIN, C.; GANTET, P. Modulating rice stress tolerance by transcription factors. Biotechnology and Genetic Engineering Reviews, v. 25, n. 1, p. 381-404, 2008. KITSIOS, G.; DOONAN, J. H. Cyclin dependent protein kinases and stress responses in plants. Plant signaling & behavior, v. 6, n. 2, p. 204-209, 2011. KNIGHT, H. Calcium signaling during abiotic stress in plants. International review of cytology, v. 195, n.1, p. 269-324, 1999. KONDO, T.; KAJITA, R.; MIYAZAKI, A.; HOKOYAMA, M.; NAKAMURA-MIURA, T.; MIZUNO, S.; SAKAGAMI, Y. Stomatal density is controlled by a mesophyll-derived signaling molecule. Plant and cell physiology, v. 51, n. 1, p. 1-8, 2010. KUMAR, A.; DIXIT, S.; RAM, T.; YADAW, R. B.; MISHRA, K. K.; MANDAL, N. P. Breeding high-yielding drought-tolerant rice: genetic variations and conventional and molecular approaches. Journal of Experimental Botany, v. 1, n. 1, p. 363, 2014A. KUMAR, R. R.; KARAJOL, K.; NAIK, G. R. Effect of polyethylene glycol induced water stress on physiological and biochemical responses in pigeonpea (Cajanus cajan L. Millsp.). Recent Research in Science and Technology, v. 3, n. 1, p. 148-152, 2011. KUMAR, S.; DWIVEDI, S. K.; SINGH, S. S.; JHA, S. K.; LEKSHMY, S.; ELANCHEZHIAN, R.; BHATT, B. P. Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. SABRAO Journal of Breeding & Genetics, v. 46, n. 2, p. 217-230, 2014B. LADEANA, W. H.; REINKE, V.; GREEN, P.; HIRST, M.; MARRA, M. A.; WATERSTON, R. H. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Research, v. 19, n. 4, p. 657-666, 2009. LAFITTE, H. R.; COURTOIS, B.; ARRAUDEAU, M. Genetic improvement of rice in aerobic systems: progress from yield to genes. Field Crops Research, v. 75, n. 2, p. 171-190, 2002. LAFITTE, H. R.; PRICE, A. H.; COURTOIS, B. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers. Theoretical and Applied Genetics, v. 109, n. 6, p. 1237-1246, 2004. LANG, N. T.; QUANG, N.; BINH, C.; NHA, C. T.; BUU, B. C. A candidate gene response to drought stress condition in rice (Oryza sativa L.). Omonrice, v. 113, p. 105–113, 2010. LARCHER, W. Ecofisiologia vegetal. São Carlos: Rima, 2000. 531p LAROSA, P. C.; RHODES, D.; RHODES, J. C.; BRESSAN, R. A.; CSONKA, L. N. Elevated accumulation of proline in NaCl-adapted tobacco cells is not due to altered Δ1-pyrroline-5-carboxylate reductase. Plant physiology, v. 96, n. 1, p. 245-250, 1991. LARTAUD, M.; PERIN, C.; COURTOIS, B.; THOMAS, E.; HENRY, S.; BETTEMBOURG, M.; DIVOL, F.; LANAU, N.; ARTUS, F.; BUREAU, C.; VERDEIL, J. L. PHIV-RootCell: a supervised image analysis tool for rice root anatomical parameter quantification. Frontiers in plant science. v. 5, n. 790, p. 1-7, 2014. LAWLOR, D. W.; CORNIC, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment, v. 25, n. 2, p. 275-294, 2002. LEFEBVRE, V.; NORTH, H.; FREY, A.; SOTTA, B.; SEO, M.; OKAMOTO, M.; MARION‐POLL, A. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal, v. 45, n. 3, p. 309-319, 2006. LI, H. W.; ZANG, B. S.; DENG, X. W.; WANG, X. P. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta, v. 234, n. 5, p. 1007-1018, 2011. LI, J. Y.; WANG, J.; ZEIGLER, R. S. The 3,000 Rice Genomes Project. GigaScience, v. 3, n. 8, p. 1-3, 2014. LI, J.; HAN, Y.; LIU, L.; CHEN, Y.; DU, Y.; ZHANG, J.; ZHAO, Q. qRT9, a quantitative trait locus controlling root thickness and root length in upland rice. Journal of experimental botany, v. 66, n. 9, p. 2723-2732, 2015. LIAN, H. L.; YU, X.; YE, Q.; DING, X. S.; KITAGAWA, Y.; KWAK, S. S.; SU, W.; TANG, Z. C. The role of aquaporin RWC3 in drought avoidance in rice. Plant and Cell Physiology, v. 45, n. 4, p. 481-489, 2004. LIMA, J. M.; NATH, M.; DOKKU, P.; RAMAN, K. V.; KULKARNI, K. P.; VISHWAKARMA, C.; ROBIN, S. Physiological, anatomical and transcriptional alterations in a rice mutant leading to enhanced water stress tolerance. AoB Plants, v. 7, n.1, p. 1-19, 2015. LISTER, R.; O’MALLEY, R. C.; TONTI-FILIPPINI, J.; GREGORY, B. D.; MILLAR, A. H.; ECKER, J. R. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, v. 133, n. 3, p. 523-536, 2008. LIU, C.; MAO, B.; OU, S.; WANG, W.; LIU, L.; WU, Y.; WANG, X. A bZIP transcription factor, confers salinity and drought tolerance in rice. Plant molecular biology, v. 84, n. 1-2, p. 19-36, 2014. LIU, G. L.; MEI, H. W.; YU, X. Q.; ZOU, G. H.; LIU, H. Y.; HU, S. P.; LUO, L. J. QTL analysis of panicle neck diameter, a trait highly correlated with panicle size, under well-watered and drought conditions in rice (Oryza sativa L.). Plant Science, v. 174, n. 1, p. 71-77, 2008. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods, v. 25, n. 4, p. 402-408, 2001. LOBELL, D. B.; GOURDJI, S. M. The influence of climate change on global crop the influence of climate change on global crop. Plant Physiology, v. 160, n. 4, p. 1686–1697, 2012. LU, T.; LU, G.; FAN, D.; ZHU, C.; LI, W.; ZHAO, Q.; HAN, B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome research, v. 20, n. 9, p. 1238-1249, 2010. LUM, M. S.; HANAFI, M. M.; RAFII, Y. M.; AKMAR, A. S. N. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. Journal of Animal and Plant Science, v. 24, n. 5, p. 1487-1493, 2014. LUND, S. P.; NETTLETON, D.; MCCARTHY, D. J.; SMYTH, G. K. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Statistical Applications in Genetics and Molecular Biology, v. 11, n. 5, p. 8, 2012. MA, N.; WANG, Y.; QIU, S.; KANG, Z.; CHE, S.; WANG, G.; HUANG, J. Overexpression of OsEXPA8, a root-specific gene, improves rice growth and root system architecture by facilitating cell extension. PloS one, v. 8, n. 10, p. e75997, 2013. MAHAJAN, S.; TUTEJA, N. Cold, salinity and drought stresses: An overview; Archives of Biochemistry and Biophysics, v. 444, n. 2, p. 139–158, 2006. MANSCHADI, A. M.; CHRISTOPHER, J.; HAMMER, G. L. The role of root architectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology, v. 33, n. 9, p. 823-837, 2006. MAPA. A cultura do arroz no Brasil. 2012. Disponível em: http://www.agricultura.gov.br/vegetal/culturas/arroz/. Acessado em 17/01/2013. MARDIS, E. R. The impact of next-generation sequencing technology on genetics. Trends in genetics, v. 24, n. 3, p. 133-141, 2008. MARE, C.; MAZZUCOTELLI, E.; CROSATTI, C.; FRANCIA, E.; CATTIVELLI, L. Hv-WRKY38: a new transcription factor involved in cold-and drought-response in barley. Plant molecular biology, v. 55, n. 3, p. 399-416, 2004. MARIONI, J. C.; MASON, C. E.; MANE, S. M.; STEPHENS, M.; GILAD, Y. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome research, v. 18, n. 9, p. 1509-1517, 2008. MARSHALL, A.; AALEN, R.B.; AUDENAERT, D.; BEECKMAN, T.; BROADLEY, M.R.; BUTENKO, M.A.; CAÑO-DELGADO, A.I.; DE VRIES, S.; DRESSELHAUS, T.; FELIX, G.; GRAHAM, N.S.; FOULKES, J.; GRANIER, C.; GREB, T.; GROSSNIKLAUS, U.; HAMMOND, J.P.; HEIDSTRA, R.; HODGMAN, C.; HOTHORN, M.; INZÉ, D. ØSTERGAARD, L.; RUSSINOVA, E.; SIMON, R.; SKIRYCZ, A.; STAHL, Y.; ZIPFEL, C.; DE SMET, I. Tackling Drought Stress : RECEPTOR-LIKE KINASES Present New Approaches. The Plant Cell, v. 24, n. 6, p. 2262–2278, 2012. MCGETTIGAN, P. A. Transcriptomics in the RNA-seq era. Current Opinion in Chemical Biology, v. 17, n. 1, p. 4-11, 2013. MOHAN, M. M.; NARAYANAN, S. L.; IBRAHIM, S. M. Chlorophyll stability index (CSI): its impact on salt tolerance in rice. International Rice Research Notes, v. 25, n. 2, p. 38-39, 2000. MOROZOVA, O.; MARRA, M. A. Applications of next-generation sequencing technologies in functional genomics. Genomics, v. 92, p. 255-264, 2008. MORTAZAVI, A.; WILLIAMS, B. A.; MCCUE, K.; SCHAEFFER, L.; WOLD, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, v. 5, p. 621–628, 2008. MOSTAJERAN, A.; RAHIMI-EICHI, V. Effects of drought stress on growth and yield of rice (Oryza sativa L.) cultivars and accumulation of proline and soluble sugars in sheath and blades of their different ages leaves. American-Eurasian Journal of Agricultural & Environmental Science, v. 5, n. 2, p. 264-272, 2009. MUELLER, K.; BITTEL, P.; CHINCHILLA, D.; JEHLE, A. K.; ALBERT, M.; BOLLER, T.; FELIX, G. Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell, v. 24, p. 2213–2224, 2012. MURTHY, K. B. C.; KUMAR, A.; HITTALMANI, S. Response of rice (Oryza sativa L.) genotypes under aerobic situations. Eletronic Journal of Plant Breeding. v. 2, n. 2, p. 194-199, 2011. NADA, R. M.; ABOGADALLAH, G. M. Aquaporins are major determinants of water use efficiency of rice plants in the field. Plant Science, v. 227, p. 165-180, 2014. NAGALAKSHMI, U.; WAERN, K.; SNYDER, M. RNA-Seq: A method for comprehensive transcriptome analysis. Current Protocols in Molecular Biology, v. 4, n. 1, p. 4.11.1-4.11.13, 2010. NAGALAKSHMI, U.; WANG, Z.; WAERN, K.; SHOU, C.; RAHA, D.; GERSTEIN, M.; SNYDER, M. The transcriptional landscape of the yeast whole genome defined by RNA sequencing. Science, v. 320, n. 5881, p. 1344-1349, 2008. NAGHAVI, M. R.; ABOUGHADAREH, A. P.; KHALILI, M. Evaluation of drought tolerance indices for screening some of corn (Zea mays L.) cultivars under environmental conditions. Notulae Scientia Biologicae, v. 5, n. 3, p. 388, 2013. NAKANO, T.; SUZUKI, K.; FUJIMURA, T.; SHINSHI, H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant physiology, v. 140, n. 2, p. 411-432, 2006. NAKANO, Y.; ASADA, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, v. 22, n. 5, p. 1068-1072, 1981. NASCIMENTO, Flávia Caldeira do. A expressão de citocininas oxidases em raízes de arroz altera a morfologia radicular e aumenta a eficiência de aquisição de nutrientes. 2014. 55f. Dissertação (Mestrado em Agronomia, Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. NEVES, O. S. C.; CARVALHO, J. G.; MARTINS, F. A. D.; PÁDUA, T. R. P.; PINHO, P. J. Uso do SPAD-502 na avaliação dos teores foliares de clorofila, nitrogênio, enxofre, ferro e manganês do algodoeiro herbáceo. Pesquisa agropecuária brasileira, v. 40, n. 5, p. 517-521, 2005. NOUNJAN, N.; NGHIA, P. T.; THEERAKULPISUT, P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. Journal of plant physiology, v. 169, n. 6, p. 596-604, 2012. O’TOOLE, J. C.; BLAND, W. L. Genotypic variation in crop plant root systems. Advances in Agronomy, v. 41, n. 2, p. 91-145, 1987. OKONIEWSKI, M. J.; MILLER, C. J. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics, v. 7, n. 1, p. 276-290, 2006. OLIVEIRA, I. C.; CORUZZI, G. M. Carbon and amino acids reciprocally modulate the expression of glutamine synthetase in Arabidopsis. Plant physiology, v. 121, n. 1, p. 301-310, 1999. OONO, Y.; KAWAHARA, Y.; YAZAWA, T.; KANAMORI, H.; KURAMATA, M.; YAMAGATA, H.; MATSUMOTO, T. Diversity in the complexity of phosphate starvation transcriptomes among rice cultivars based on RNA-Seq profiles. Plant molecular biology, v. 83, n. 6, p. 523-537, 2013. O'TOOLE, J. C.; CHANG T. T. Drought resistance in cereals: rice, a case study. In: MUSSELL, H.; STAPLES, R. C. eds. Stress physiology in crop plants. New York: J. Wiley & Sons, p. 373-405, 1979. PASSIOURA, J. B. Drought and drought tolerance. In: Drought tolerance in higher plants. Genetical, physiological and molecular biological analysis. Belhassen E. (Ed.). Kluwer Academic Publisher, Dordrecht. 1997. p. 1-5. PASSIOURA, J. B. The drought environment: physical, biological and agricultural perspectives. Journal of Experimental Botany, v. 58, n. 2, p. 113-117, 2007. PASSIOURA, J. B. Water in the soil-plant-atmosphere continuum. In: Physiological Plant Ecology II. Springer Berlin Heidelberg, 1982. p. 5-33. PAUL, M. J., JHURREEA, D., ZHANG, Y., PRIMAVESI, L. F., DELATTE, T., SCHLUEPMANN, H.; WINGLER, A. Upregulation of biosynthetic processes associated with growth by trehalose 6-phosphate. Plant signaling & behavior, v. 5, n. 4, p. 386, 2010. PELEG, Z.; REGUERA, M.; TUMIMBANG, E.; WALIA, H.; BLUMWALD, E. Cytokinin‐mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water‐stress. Plant Biotechnology Journal, v. 9, n. 7, p. 747-758, 2011. PENNISI, E. The blue revolution, drop by drop, gene by gene. Science, v. 320, n. 5873, p. 171-173, 2008. PIMENTEL GOMES, F. Curso de estatística experimental. 14ª ed. Piracicaba – SP: Editora da Universidade de São Paulo, 2000. 477p. PIMENTEL, C. A relação da planta com a água. 1ª ed. Edur – RJ: Editora da Universidade Federal Rural do Rio de Janeiro, 2004. 191p. PINHEIRO, B. S. Cultivo do arroz de terras altas – Sistemas de produção. Embrapa Arroz e Feijão. Versão eletrônica, 2003. POEHLMAN, J.M.; SLEPER, D.A. Breeding field crops. Ames, Iowa, USA: Iowa State Press. 1995. 473p. PRAKSH, V. Screening of wheat (Triticum aestivum L.) genotypes under limited moisture and heat stress environments. The Indian Journal of Genetics and Plant Breeding, v. 67, n. 1, p. 31-33, 2007. PRICE, A. H.; TOMOS, A. D.; VIRK, D. S. Genetic dissection of root growth in rice (Oryza sativa L.) I: A hydroponic screen. Theoretical and Applied Genetics, v. 95, n. 1-2, p. 143-152, 1997. PRICE, A. H.; TOWNEND, J.; JONES, M. P.; AUDEBERT, A.; COURTOIS, B. Mapping QTLs associated with drought avoidance in upland rice grown in the philippines and West Africa. Plant Molecular Biology, v. 48, n. 5-6, p. 683-695, 2002. PROJECT, I. R. G. S. The map-based sequence of the rice genome. Nature, v. 436, n. 7052, p. 793-800, 2005. QUAN, R.; HU, S.; ZHANG, Z.; ZHANG, H.; ZHANG, Z.; HUANG, R. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant biotechnology journal, v. 8, n. 4, p. 476-488, 2010. R CORE TEAM: A language and environment for statistical computing. 2014. RABARA, R. C.; TRIPATHI, P.; RUSHTON, P. J. The Potential of Transcription Factor-Based Genetic Engineering in Improving Crop Tolerance to Drought. Omics: a journal of integrative biology, v. 18, n. 10, p. 601-614, 2014. RABELLO, A. R.; GUIMARÃES, C. M.; RANGEL, P. H.; DA SILVA, F. R.; SEIXAS, D.; DE SOUZA, E.; BRASILEIRO, A. C. M.; SPEHAR, C. R.; FERREIRA, M. E.; MEHTA, Â. Identification of drought-responsive genes in roots of upland rice (Oryza sativa L). BMC genomics, v. 9, n. 1, p. 485, 2008. RABELLO, Aline Rodrigues. Identificação de genes responsivos à seca em raiz de arroz de sequeiro (Oryza sativa L.). 2008. 80f. Dissertação (Mestrado em Agronomia). Faculdade de Agronomia e Medicina Veterinária. Universidade de Brasília, DF, 2008. RAMAN, A.; VERULKAR, S.; MANDAL, N.; VARIAR, M.; SHUKLA, V.; DWIVEDI, J.; SINGH, B.; SINGH, O.; SWAIN, P.; MALL, A.; ROBIN, S. Drought yield index to select high yielding rice lines under different drought stress severities. Rice, v. 5, n. 1, p.1-12, 2012. RANGEL, Rafael Passos. Morfologia, arquitetura radicular e metabolismo de nitrogênio em variedades de arroz sob baixa disponibilidade de amônio. 2014. 49f. Dissertação (Mestrado em Ciência do Solo). Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2014. REDILLAS, M. C. F. R.; JEONG, J. S.; KIM, Y. S.; JUNG, H.; BANG, S. W.; CHOI, Y. D.; HA, S. H.; REUZEAU, C.; KIM, J. K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions. Plant biotechnology journal, v. 10, n. 7, p. 792-805, 2012. REGUERA, M.; PELEG, Z.; ABDEL-TAWAB, Y. M.; TUMIMBANG, E. B.; DELATORRE, C. A.; BLUMWALD, E. Stress-Induced Cytokinin Synthesis Increases Drought Tolerance through the Coordinated Regulation of Carbon and Nitrogen Assimilation in Rice. Plant Physiology, v. 163, n. 4, p. 1609-1622, 2013. RICARDO, T. R. Viabilidade econômica e risco das principais culturas anuais no município de Rio Verde (GO). 2010. 91 f. Dissertação (Mestrado) – Universidade Federal de Goiás, Goiânia, 2010. RICH, S. M.; WATT, M. Soil conditions and cereal root system architecture: review and considerations for linking Darwin and Weaver. Journal of Experimental Botany, v. 64, n. 5, p.1193-1208, 2013. ROBINSON, M. D.; MCCARTHY, D. J.; SMYTH, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, v. 26, n. 1, p. 139-140, 2010. ROBINSON, M. D.; OSHLACK, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome biology, v. 11, n. 3, p. 1, 2010. ROSIELLE, A. A.; HAMBLIN, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop science, v. 21, n. 6, p. 943-946, 1981. ROYCE, T. E.; ROZOWSKY, J. S.; GERSTEIN, M. B. Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic acids research, v. 35, n. 15, p. e99, 2007. SCHNEIDER, C. A.; RASBAND, W. S.; ELICEIRI, K. W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods. v. 9, n. 1 p. 671-675, 2012. SCHNEIDER, K. A.; ROSALES-SERNA, R.; IBARRA-PEREZ, F.; CAZARES-ENRIQUEZ, B.; ACOSTA-GALLEGOS, J. A.; RAMIREZ-VALLEJO, P.; KELLY, J. D. Improving common bean performance under drought stress. Crop Science, v. 37, n. 1, p. 43-50, 1997. SERRAJ, R.; MCNALLY, K. L.; SLAMET-LOEDIN, I.; KOHLI, A.; HAEFELE, S. M.; ATLIN, G.; KUMAR, A. Drought resistance improvement in rice: an integrated genetic and resource management strategy. Plant Production Science, v. 14, n. 1, p. 1-14, 2011. SHINOZAKI, K.; YAMAGUCHI-SHINOZAKI, K. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, v. 58, n. 2, p. 221-227, 2007. SHIRASAWA, K.; TAKABE, T.; TAKABE, T.; KISHITANI, S. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. Annals of botany, v. 98, n. 3, p. 565-571, 2006. SIDDIQUE, M. R. B.; HAMID, A.; ISLAM, M. S. Drought stress effects on water relations of wheat. Botanical Bulletin of Academia Sinica, v. 41, n.1, p. 35-39, 2000. SILVEIRA, R. D. D.; ABREU, F. R. M.; MAMIDI, S.; MCCLEAN, P. E.; VIANELLO, R. P.; LANNA, A. C.; BRONDANI, C. Expression of drought tolerance genes in tropical upland rice cultivars (Oryza sativa). Genetics and Molecular Research, v. 14, n. 3, p. 8181-8200, 2015. SINAKI, J. M.; HERAVAN, E. M.; RAD, A. H. S.; NOORMOHAMMADI, G. H.; ZAREI, G. H. The effects of water deficit during growth stages of canola (Brassica napus L.). American-Eurasian Journal of Agricultural and Environmental Science, v. 2, n. 4, p. 417-422, 2007. SINGH, A.; KUMAR, P.; GAUTAM, V.; RENGASAMY, B.; ADHIKARI, B.; UDAYAKUMAR, M.; SARKAR, A. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Nature Scientific Reports, v. 6, n. 1, p. 1-17, 2016. SINGH, A.; SHAMIM, M.; SINGH, K. N. Genotypic variation in root anatomy, starch accumulation, and protein induction in upland rice (Oryza sativa) varieties under water stress. Agricultural Research, v. 2, n. 1, p. 24-30, 2013. SINGH, B. U.; RAO, K. V.; SHARMA, H. C. Comparison of selection indices to identify sorghum genotypes resistant to the spotted stemborer Chilo partellus (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, v. 31, n. 1-2, p. 38-51, 2011. SINGH, K. K.; GHOSH, S. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions. Plant cell reports, v. 32, n. 2, p. 183-193, 2013. SIWI-IWMI. 2004. Water – More Nutrition Per Drop. Stockholm International Water Institute. Stockholm. Disponível em: http://www.swedishwaterhouse.se/wp-content/uploads/CSD_More_nutrition_per_drop_2004.pdf. Acessado em: 12/03/2015. SOKAL, R. R.; ROHLF, F. J. The comparison of dendrograms by objective methods. Taxon, v.11, p. 33-40, 1962. SU, J.; WU, R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Science, v. 166, n. 4, p. 941-948, 2004. SWAMY, B. P.; KUMAR, A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnology advances, v. 31, n. 8, p. 1308-1318, 2013. TABUCHI, M.; SUGIYAMA, K.; ISHIYAMA, K.; INOUE, E.; SATO, T.; TAKAHASHI, H.; YAMAYA, T. Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. The Plant Journal, v. 42, p. 641-651, 2005. TANAKA, Y.; SUGANO, S. S.; SHIMADA, T.; HARA‐NISHIMURA, I. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytologist, v. 198, n. 3, p. 757-764, 2013. TARDIEU, F.; TUBEROSA, R. Dissection and modelling of abiotic stress tolerance in plants. Current opinion in plant biology, v. 13, n. 2, p. 206-212, 2010. TERRA, T. G. R.; DE BARROS LEAL, T. C. A.; BORÉM, A.; RANGEL, P. H. N. Tolerância de linhagens de arroz de terras altas à seca. Pesquisa Agropecuária Tropical, v. 43, n. 2, p. 201-208, 2013. TERRA, T. G. R.; LEAL, T. C. A. D. B.; RANGEL, P. H. N.; BARROS, H. B.; SANTOS, A. C. D. Tolerance to drought in rice cultivars in Southern Cerrado area from Tocantins state, Brazil. Acta Scientiarum Agronomy, v. 32, n. 4, p. 715-719, 2010. TERRA, Thiago Gledson Rios. Avaliação de características morfofisiológicas de tolerância à seca em uma coleção nuclear de acessos de arroz de terras altas (Oryza sativa L.). 2008. 70f. Dissertação (Mestrado em Produção vegetal). Universidade Federal do Tocantins, To, 2008. TILMAN, D.; FARGIONE, J.; WOLFF, B.; D'ANTONIO, C.; DOBSON, A.; HOWARTH, R.; SCHINDLER, D.; SCHLESINGER, W. H.; SIMBERLOFF, D.; SWACKHAMER, D. Forecasting agriculturally driven global environmental change. Science, v. 292, n. 5515, p. 281-284, 2001. TORRES NETO. A. Atributos fisiológicos e relações hídricas em genótipos de mamoeiro (Carica papaya L.) na fase juvenil. 2005. 116p. Tese (Doutorado em Produção Vegetal) - Universidade Estadual do Norte Fluminense Darcy Ribeiro – UENF, Campos dos Goytacazes – RJ, 2005. TROVATO, M.; MATTIOLI, R.; COSTANTINO, P. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, v. 19, n. 4, p. 325-346, 2008. TUTEJA, N. Abscisic acid and abiotic stress signaling. Plant signaling & behavior, v. 2, n. 3, p. 135-138, 2007. UGA, Y. Quantitative measurement of root growth angle by using the basket method p. 22-26. In: SHASHIDHAR, H. E. (Org.) Methodologies for root drought studies in rice. International Rice Research Institute, 2012, 65p. UGA, Y.; KITOMI, Y.; ISHIKAWA, S.; YANO, M. Genetic improvement for root growth angle to enhance crop production. Breeding science, v. 65, n. 2, p.111-119, 2015. UGA, Y.; OKUNO, K.; YANO, M. Dro1, a major QTL involved in deep rooting of rice under upland field conditions. Journal of Experimental Botany, v. 62, n. 8, p. 2485-2494, 2011. UGA, Y.; SUGIMOTO, K.; OGAWA, S.; RANE, J.; ISHITANI, M.; HARA, N.; KITOMI, Y.; INUKAI, Y.; ONO, K.; KANNO, N.; INOUE, H.; TAKEHISA, H.; MOTOYAMA, R.; NAGAMURA, Y.; WU, J.; MATSUMOTO, T.; TAKAI, T.; OKUNO, K.; YANO, M. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature genetics, v. 45, n. 9, p. 1097-1102, 2013. UMEZAWA, T.; FUJITA, M.; FUJITA, Y.; YAMAGUCHI-SHINOZAKI, K.; SHINOZAKI, K. Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Current opinion in biotechnology, v. 17, n. 2, p. 113-122, 2006. UNITED NATIONS. 2008. World population prospects: The 2008 revision population database. Disponível online em: esa.un.org/unpp/index.asp? panel=1. Acessado em: 20/04/2014. USMAN, M.; RAHEEM, Z.; AHSAN, T.; IQBAL, A.; SARFARAZ, Z. N.; HAQ, Z. Morphological, physiological and biochemical attributes as indicators for drought tolerance in rice (Oryza sativa L.). European Journal of Biological Sciencies, v. 5, n. 1, p. 23-28, 2013. VAHDATI, K.; LESLIE, C. Abiotic Stress – Plant responses and applications in agriculture. In. DUQUE, A. S.; ALMEIDA, A. M.; SILVA, A. B.; SILVA, J. M.; FARINHA, A. P.; SANTOS, D.; FEVEREIRO, P.; ARAÚJO, S. S. Abiotic Stress Responses in Plants: Unraveling the Complexity of Genes and Networks to Survive, 2013, p.57-101. VAN VERK, M. C.; HICKMAN, R.; PIETERSE, C. M.; VAN WEES, S. RNA-Seq: revelation of the messengers. Trends in plant science, v. 18, n. 4, p. 175-179, 2013. VENUPRASAD, R.; LAFITTE, H. R.; ATLIN, G. N. Response to direct selection for grain yield under drought stress in rice. Crop Science, v. 47, n. 1, p. 285-293, 2007. VINOCUR, B.; ALTMAN, A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current opinion in biotechnology, v. 16, n. 2, p. 123-132, 2005. WALLACE, D. H.; BAUDOIN, J. P.; BEAVER, J.; COYNE, D. P.; HALSETH, D. E.; MASAYA, P. N.; ZOBEL, R. W. Improving efficiency of breeding for higher crop yield. Theoretical and Applied Genetics, v. 86, n. 1, p. 27-40, 1993. WANDER, A. L. A cultura. In: BORÉM, A.; RANGEL, P. H. N. Arroz do plantio a colheita. 1 ed. Viçosa. Universidade Federal de Viçosa, 2015, v.1, p. 9-26. WANG, D.; PAN, Y.; ZHAO, X.; ZHU, L.; FU, B.; LI, Z. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. BMC genomics, v. 12, n. 1, p. 1, 2011. WANG, Z.; GERSTEIN, M.; SNYDER, M. RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, v. 10, n. 1, p. 57-63, 2009. WASSMANN, R.; JAGADISH, S. V. K.; HEUER, S.; ISMAIL, A.; REDONA, E.; SERRAJ, R.; SUMFLETH, K. Climate change affecting rice production: the physiological and agronomic basis for possible adaptation strategies. Advances in agronomy, v. 101, n. 1, p. 59-122, 2009. WEATHERLEY, P. E. Studies in the water relations of the cotton plant. I. The field measurements of water deficits in leaves. New Phytologist, v. 49, n. 1, p. 81-97, 1950. WERNER, T.; NEHNEVAJOVA, E.; KÖLLMER, I.; NOVÁK, O.; STRNAD, M.; KRÄMER, U.; SCHMULLING, T. Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. The Plant Cell Online, v. 22, n. 12, p. 3905-3920, 2010. WU, T. D.; NACU, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics, v. 26, n. 7, p. 873-881, 2010. WU, W.; CHENG, S. Root genetic research, an opportunity and challenge to rice improvement. Field Crops Research, v. 165, p. 111-124, 2014. WU, X.; SHIROTO, Y.; KISHITANI, S.; ITO, Y.; TORIYAMA, K. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant cell reports, v. 28, n. 1, p. 21-30, 2009. XIONG, J.; ZHANG, L.; FU, G.; YANG, Y.; ZHU, C.; TAO, L. Drought-induced proline accumulation is uninvolved with increased nitric oxide, which alleviates drought stress by decreasing transpiration in rice. Journal of plant research, v. 125, n. 1, p. 155-164, 2012. XU, H.; GAO, Y.; WANG, J. Transcriptomic analysis of rice (Oryza sativa) developing embryos using the RNA-Seq technique. PloS one, v. 7, n. 2, p. e30646, 2012. XU, Z. Z.; ZHOU, G. S. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta, v. 224, n. 5, p. 1080-1090, 2006. YAMADA, K.; LIM, J.; DALE, J. M.; CHEN, H.; SHINN, P.; PALM, C. J.; SOUTHWICK, A. M.; WU, H. C.; KIM, C.; NGUYEN, M.; PHAM, P.; CHEUK, R.; KARLIN-NEWMANN, G.; LIU, S. X.; LAM, B.; SAKANO, H.; WU, T.; YU, G.; MIRANDA, M.; QUACH, H. L.; TRIPP, M.; CHANG, C. H.; LEE, J. M.; TORIUMI, M.; CHAN, M. M.; TANG, C. C.; ONODERA, C. S.; DENG, J. M.; AKIYAMA, K.; ANSARI, Y.; ARAKAWA, T.; BANH, J.; BANNO, F.; BOWSER, L.; BROOKS, S.; CARNINCI, P.; CHAO, Q.; CHOY, N.; ENJU, A.; GOLDSMITH, A. D.; GURJAL, M.; HANSEN, N. F.; HAYASHIZAKI, Y.; JOHNSON-HOPSON, C.; HSUAN, V. W.; IIDA, K.; KARNES, M.; KHAN, S.; KOESEMA, E.; ISHIDA, J.; JIANG, P. X.; JONES, T.; KAWAI, J.; KAMIYA, A.; MEYERS, C.; NAKAJIMA, M.; NARUSAKA, M.; SEKI, M.; SAKURAI, T.; SATOU, M.; TAMSE, R.; VAYSBERG, M.; WALLENDER, E. K.; WONG, C.; YAMAMURA, Y.; YUAN, S.; SHINOZAKI, K.; DAVIS, R. W.; THEOLOGIS, A.; ECKER, J. R. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, v. 302, n. 5646, p. 842-846, 2003. YAMAGUCHI-SHINOZAKI, K.; SHINOZAKI, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, v. 57, p. 781-803, 2006. YAMBAO, E. B.; INGRAM, K. T.; REAL, J. G. Root xylem influence on the water relations and drought resistance of rice. Journal of Experimental Botany, v. 43, n. 7, p. 925-932, 1992. YOO, C. Y.; PENCE, H. E.; HASEGAWA, P. M.; MICKELBART, M. V. Regulation of transpiration to improve crop water use. Critical Reviews in Plant Science, v. 28, n. 6, p. 410-431, 2009. YOO, C. Y.; PENCE, H. E.; JIN, J. B.; MIURA, K.; GOSNEY, M. J.; HASEGAWA, P. M.; MICKELBART, M. V. The Arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. The Plant Cell Online, v. 22, n. 12, p. 4128-4141, 2010. YOSHIDA, S.; BHATTACHARJEE, D. P.; CABUSLAY, G. S. Relationship between plant type and root growth in rice. Soil science and plant nutrition, v. 28, n. 4, p. 473-482, 1982. YU, C.; SUN, C.; SHEN, C.; WANG, S.; LIU, F.; LIU, Y.; GEISLER, M. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (Oryza sativa L.). The Plant Journal, v. 83, n. 5, p. 818-830, 2015. YU, L.; CHEN, X.; WANG, Z.; WANG, S.; WANG, Y.; ZHU, Q.; XIANG, C. Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant physiology, v. 162, n. 3, p. 1378-1391, 2013. ZARE, M. Evaluation of drought tolerance indices for the selection of Iranian barley (Hordeum vulgare) cultivars. African Journal of Biotechnology, v. 11, n. 93, p. 15975-15981, 2012. ZHOU, S., HU, W.; DENG, X.; MA, Z.; CHEN, L.; HUANG, C.; WANG, C.; WANG, J.; HE, Y.; YANG, G.; HE, G. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PloS one, v. 7, n. 12, p. e52439, 2012. ZHOU, X. F.; JIN, Y. H.; YOO, C. Y.; LIN, X. L.; KIM, W. Y.; YUN, D. J.; JIN, J. B. CYCLIN H; 1 regulates drought stress responses and blue light-induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis. Plant physiology, v. 162, n. 2, p. 1030-1041, 2013. ZHU, J.; BROWN, K. M.; LYNCH, J. P. Root cortical aerenchyma improves the drought tolerance of maize (Zea mays L.). Plant, cell & environment, v. 33, n. 5, p. 740-749, 2010. ZUBAER, M. A.; CHOWDHURY, A. K. M. M. B.; ISLAM, M. Z.; AHMED, T.; HASAN, M. A. Effects of water stress on growth and yield attributes of Aman rice genotypes. International Journal of Sustainable Crop Production, v. 2, n. 6, p. 25-30, 2007.por
dc.rightsAcesso Abertopor
dc.subjectDroughteng
dc.subjectHigh-throughput sequencingeng
dc.subjectRNA-seqeng
dc.subjectReal time PCReng
dc.subjectSecapor
dc.subjectSequenciamento de nova geraçãopor
dc.subjectRNA-seqpor
dc.subjectPCR em tempo realpor
dc.subject.cnpqAgronomiapor
dc.titleCaracterísticas morfológicas, fisiológicas e transcriptoma em variedades de arroz (Oryza sativa L.) contrastantes quanto a tolerância ao estresse hídricopor
dc.title.alternativeMorphological, physiological and trancriptome traits of rice varieties (Oryza sativa L.) contrasting to the drought toleranceeng
dc.typeTesepor
Appears in Collections:Doutorado em Agronomia - Ciência do Solo

Files in This Item:
File Description SizeFormat 
2017 - Leandro Martins Ferreira.pdfDocumento principal2.69 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.