???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/1218
Full metadata record
DC FieldValueLanguage
dc.creatorNobre, Camila Pinheiro-
dc.creator.Latteshttp://lattes.cnpq.br/5350879120540577por
dc.contributor.advisor1Berbara, Ricardo Luiz Louro-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/8529910145308595por
dc.contributor.advisor-co1Saggin Júnior, Orivaldo José-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9993758177081554por
dc.contributor.referee1Goto, Bruno Tomio-
dc.contributor.referee2Silva, Eliane Maria Ribeiro da-
dc.date.accessioned2016-09-21T15:12:59Z-
dc.date.issued2011-02-17-
dc.identifier.citationNOBRE, Camila Pinheiro. Fungos micorrízicos arbusculares em briófitas e raízes modificadas de manjericão (Ocimum basilicum L.) in vitro. 2011. 90 f. Dissertação (Mestrado em ) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2011.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/1218-
dc.description.resumoO objetivo do trabalho foi observar a germinação e produção de glomalina e acompanhar desenvolvimento de espécies de fungos micorrízicos arbusculares (FMA) do banco de germoplasma da Embrapa em raízes geneticamente modificadas de manjericão e em briófitas in vitro. Ainda, avaliar sua interação com os hospedeiros e a influência de meio de cultura enriquecido com ácidos húmicos no crescimento do fungo e da briófita Lunularia cruciata. Para isso algumas espécies de FMAs foram selecionadas e tiveram seus glomerosporos extraídos e submetidos ao processo de desinfestação superficial, colocados em meio Agarágua e câmara com temperatura controlada para germinar. Realizou-se teste de germinação por 15 dias e os resultados foram submetidos a análise de variância e aplicado teste de Tukey à 5% de probabilidade. Espécies com glomerosporos germinados (Gigaspora margarita, Glomus manihots, Scutellospora heterogama e Glomus proliferum) foram colocadas em raízes modificadas de manjericão roxo onde tiveram seu crescimento observado até 100 dias após a inoculação. Ainda como parte da caracterização de espécies de FMAs foi realizado a quantificação dos teores de glomalina nas amostras de multiplicação sendo os resultados submetidos a análise de variância e aplicado teste de Scott-Knott à 5% de probabilidade. No segundo capítulo foi verificado o efeito da associação FMAs em raízes modificadas de manjericão roxo e no terceiro capítulo a influência da associação ácido húmico em diferentes concentrações, briófita Lunularia cruciata (área e comprimento) e FMAs. Os resultados foram submetidos à análise de variância e teste de Tukey a 5% de probabilidade. Scutellospora heterogama foi a espécie com maiores taxas de germinação de glomerosporos, seguida da Gigaspora margarita. As espécies de Glomus esporularam logo após a formação da simbiose. A quantidade de glomalina produzida pelos diferentes FMAs foi distinta, em especial na fração glomalina total. As diferentes espécies de FMAs não apresentaram distinção na eficiência de promover o desenvolvimento das raízes transformadas de Ocimum basilicum. O crescimento de raízes transformadas de manjericão em meio MSR foi ampliado a partir dos 15 dias após a inoculação de fungos micorrízicos. O uso de ácidos húmicos no meio de cultura em concentrações de 20 e 80 mg C.L-1 incrementou o crescimento da briófita Lunularia cruciata e sua associação com fungos micorrízicos arbusculares, assim como promoveram a maior esporulação de Gl. proliferum. A associação Lunularia cruciata e FMAs foi caracterizada como mutualista já que ambos apresentaram benefícios em crescimento e esporulação. Gigaspora margarita e Glomus proliferum promoveram maior crescimento de Lunularia cruciata.por
dc.description.abstractThe aim of this study was to observe the germination, production of glomalin and monitor development of species of mycorrhizal fungi (AMF) of the germplasm bank of Embrapa in root organ culture (ROC) of basil and bryophytes in vitro, analyzing their interaction with the hosts and the influence of the culture medium enriched with humic acids on fungal growth and bryophyte Lunularia cruciata. For this, some AMF species were selected and had their glomerospores extracted and subjected to surface disinfection process, placed in water-agar medium and temperature-controlled chamber to germinate. A germination test was conducted for 15 days, and the results were analyzed by ANOVA and Tukey test applied to 5% probability. Species with germinated glomerospores (Gigaspora margarita, Glomus manihots, Scutellospora heterogama and Glomus proliferum) were placed in ROC of purple basil where they had their growth observed until 100 days after inoculation. Also as part of the characterization of AMF species it was quantified the level of glomalin in the samples of multiplication and the results were subjected to analysis of variance and Scott-Knott test at 5% probability. In the second chapter it was investigated the effect of mycorrhizal association in ROC of purple basil, and in the third chapter the influence of different concentrations of humic acid and association with growth of Lunularia cruciata (area and length). The results were submitted to ANOVA and Tukey test at 5% probability. Scutellospora heterogama was the species with higher germination rates of glomerosporos, followed by Gigaspora margarita. The species of Glomus sporulated after formation of symbiosis. The amount of glomalin produced by different AMF was distinct, especially in total glomalin fraction. Different AMF species did not show difference in efficiency to promote development of Ocimum basilicum transformed roots. The growth of basil transformed roots in the MSR was extended from 15 days after inoculation with mycorrhizal fungi. The usage of humic acids in the culture medium in concentrations of 20 and 80 mg CL-1 enhanced growth of bryophyte L. cruciata, and its association with mycorrhizal fungi, as well as promoted the highest number of spores of Gl. proliferum. The association L. cruciata and AMF was characterized as mutualistic, since both had advantages in growth and sporulation. Gigaspora margarita and Glomus proliferum increased growth of Lunularia cruciata.eng
dc.description.provenanceSubmitted by Leticia Schettini (leticia@ufrrj.br) on 2016-09-21T15:12:59Z No. of bitstreams: 1 2011 - Camila Pinheiro Nobre.pdf: 2714138 bytes, checksum: bc436d879ddfded703d4d5fea9f9943c (MD5)eng
dc.description.provenanceMade available in DSpace on 2016-09-21T15:12:59Z (GMT). No. of bitstreams: 1 2011 - Camila Pinheiro Nobre.pdf: 2714138 bytes, checksum: bc436d879ddfded703d4d5fea9f9943c (MD5) Previous issue date: 2011-02-17eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/4703/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/19342/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/25669/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/32064/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/38440/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/44852/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/51226/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/57680/2011%20-%20Camila%20Pinheiro%20Nobre.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Agronomiapor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Agronomia - Ciência do Solopor
dc.relation.referencesAMIR, S.; JOURAIPHY, A.; MEDDICH, A.; GHAROUS, M.; WINTERTON, P.; HAFIDI, M., Structural study of humic acids during composting of activated sludge-green waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, v.177: 524–529. 2010. AZCÓN-AGUILAR, C. & BAREA, J. M. Saprofitic growth of arbuscular mycorrhizal fungi. In: VARMA, A.; HOCK, B. (Ed.). Mycorrhiza, structure, function, molecular biology and biotechnology. Berlin: Springer-Verlag, p. 391-407. 1991. BÉCARD, G. & FORTIN, J. A. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytologist, Oxford, v. 108, p. 211-218, 1988. BÉCARD, G. & PICHÉ, Y. Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. In: NORRIS, J.R.; READ, D.J. & VARMA,A.K (eds). Methods in microbiology: Techniques for study of mycorrhiza. Vol. 24. Londres- UK: Academic Press. P 89-108. 1989. BÉCARD, G. & PICHÉ, Y. Establishment of vesicular-arbuscular mycorrhiza in root organ culture: review and proposed methodology. Methods in Microbiology, London, v. 24, p. 89- 108. 1992. BÉCARD, G. & PICHÉ, Y. Fungal growth stimulation by CO2 and root exudates in vesiculararbuscular mycorrhizal symbiosis. Appl Environ Microbiol, v. 55:2320–2325. 1988. BÉCARD, G. & PICHÉ, Y. New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol., v. 112:77–83. 1989. BÉCARD, G., PICHÉ, Y., FORTIN, A.J. Some aspects on the biotrophy of VAM fungi. Agric Ecosyst Environ., 29:29–33. 1989. BÉCARD, G.; DOUDS, D. D.; PFEFFER, P. E. Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl. Environm. Microbiol., v. 58, n. 3, p. 821-825, 1992. BECKER,W.N. & HALL, I.R. Gigaspora margarita, a new species in the Endogonaceae. Mycotaxon, 4: 155-160. 1976. BENITES, V. M.; MADARI, B.; MACHADO, P. L. O. A. Extração e fracionamento quantitativo de substâncias húmicas do solo: um procedimento simplificado de baixo custo. Comunicado Técnico 16, EMBRAPA Solos, Rio de Janeiro, Rio de Janeiro. 7pp. 2003. BERBARA, R. L. L. Ionic fluxes in arbuscular mycorrhizal systems. Tese, University of Dundee. 215 pp. 1995. BERBARA, R. L. L., DE SOUZA, F. A., FONSECA, H. M. A. C. & SOUZA, S. R. Transgenic root systems in arbuscular mycorrhizal fungi studies. Agronomia, v. 35, 58-65, 2001. BERBARA, R. L. L.; FONSECA, H. M. A. C. Colonização e esporulação de fungos micorrízicos arbusculares in vitro. In: SIQUEIRA, J. O. (Ed.) Avanços em fundamentos e aplicação de micorrizas. Lavras, p. 39-65, 1996. 61 BERBARA, R. L. L.; MORRIS, B. M.; FONSECA, H. M. A. C.; REID, M.; GOW, N. A. R.; DAFT, M. J.. Electrical currents associated with arbuscular mycorrhizal interactions. New Phytologist, Oxford, v. 129, p. 433-438. 1995 BERBARA, R. L. L.; SOUZA, F. A.; FONSECA, H. M. A. C. Fungos micorrízicos arbusculares: muito além da nutrição. v. VIII, p. 53-88. In: FERNANDES, M S. (ed) Nutrição Mineral de Plantas. SBCS. 1 ed. Viçosa, 432p. 2006. BETHENFALVAY, G. J.; LINDERMAN, R.G. Mycorrhizal in sustainable agriculture. Americam Societ of Agronomy, Madison - USA, 1992. BONFANTE-FASOLO, P. Anatomy and morphology of VA mycorrhizae. In: POWELL, C.L. & BAGYARAJ, D.J., eds. VA Mycorrhizal. Boca Raton, CRC Press, p.5-33. 1984. CALDERÍN, A.G.; GURIDI, I.F.; GARCÍA, N.E. Material de origen natural que retiene cationes de metales pesados, Rev. Iberoam. Polim., v. 8:204-213. 2007. CANELLAS, L. P.; GURIDI, F.; SANTOS, G. A.; RUMJANEK, V. M.; BRAZ-FILHO, R. Aumento da resolução de espectros de RMN 13C com uso de KCl 0,03 mol L-1. Química Nova, São Paulo, v. 24, p. 131-132, 2001. CANELLAS, L.P.; FAÇANHA, A.R. Chemical nature of soil humified fractions and their activity, Pesq. Agropec. Bras. Brasilia, v. 39: 233-240.2004. CANTO-CANCHÉ, B.; LOYOLA-VARGAS, V. M. Chemical from roots, hairy roots, and their application. Chemicals via Higher Plant Bioengeering. Kluwer Academic / Plenum Publishers, New York.464: 235-275. 1999. CARLETON, T.J. & READ, D.J. Ectomycorrhizas and nutrient transfer in conifer-feather moss ecosystems. Can. J. Bot. 69: 778-785. 1991. CHABOT,S.; BÉCARD, G. & PICHÉ,Y. Life cycle of Glomus intraradix in root organ culture. Mycologia, v. 84: 315-321. 1992. CRANDALL-STOTLER, B. Musci, hepatics and anthocerotes – an essay on analogues. In New Manual of Bryology, vol. 2, ed. R.M. Schuster,. Nichinan:Hattori Botanical Laboratory. pp. 1093–129, 1984. CRANDALL-STOTLER, B.; STOTLER, R.E. & LONG, D.G. Morphology and classification of the Marchantiophyta. In: GOFFINET, B & SHAW, A.J. (Ed) Bryophyte Biologt. 2.ed. Cambridge. 565 p. 2008. CROMACK, K. & CALDWELL, B.A. The role of fungi in litter decomposition and nutrient cycling. In: CARROLL, G.C. & WICKLOW, D.T., Editors, 1992. The Fungal Community — its Organization and Role in the Ecosystem, Marcel Dekker, New York, pp. 653–668. 1992. DALPÉ, Y. & DECLERCK, S. Development of Acaulospora rehmii spore and hyphal swellings under root-organ culture. Mycologia 94:850–855. 2002. DANIELS, B.A SKIPPER, H.D. Methods for the recovery and quantitative estimation of propagules from soil. In: SCHENK, N.C. (Ed.). Methods and principles of mycorrhizal research. St. Paul: The American Phytopathological Society, p.29-35, 1982. DE LA PROVIDENCIA, I.E., DE SOUZA, F.A., FERNÁNDEZ, F., DELMAS, N.S., DECLERCK, S. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytologist 165: 261–271. 2005. DECLERCK, S.; SÉGUIN, S.; DALPÉ, Y. The monoxenic culture of arbuscular mycorrhizal fungi as a tool for germplasm collections. In: FORTIN, J.; DECLERCK, S.; STRULLU, D. G. (Eds.) In Vitro Culture of Mycorrhizas, p. 17-30. 2006. 62 DECLERCK,S.; CRANENBROCK, S.; DALPÉ,Y.; SÉGUIN,S.; GRANDMOUGINFERJANI, A.; FONTAINE, J. & SANCHOLLE,M. Glomus proliferum sp nov.: a description based in morphological, biochemical, molecular and monoxenic cultivation data. Mycologia 92: 1178-1187. 2000. DECLERCK.S; SÉGUIN,S. & DALPÉ,Y. The monoxenic culture of arbuscular mycorrhizal fungi as a tool for germoplasm collections. In: DECLERCK,S.; STRULLU, D.-G. & FORTIN, J.A.(eds). In Vitro Culture of Mycorrhizas. Soil Biology, vol.04. Springer-Verlag Berlin Heidelberg. 2005. DIOP,T.A.; BÉCARD,G. & PICHÉ, Y. Long-term in vitro culture of an endomycorrhizal fungus, Gigaspora margarita, on Ri T-DNA transformed roots of carrots, Symbiosis 12: 249- 259. 1992. DODD, J.C., BODDINGTON C.L..; RODRIGUEZ, A.; GONZALEZ-CHAVEZ, C. & MANSUR, I. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form function and detection. SSSAJ: Volume 71: Número 4 p. 1265. 2000 DRIVER, J.D.; HOLBEN, W.E & RILLIG.M.C. . Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi. Soil Biol. Biochem., v. 37:101–106. 2005. DUPRÉ DE BOULOIS H, VOETS L, DELVAUX B, JAKOBSEN I, DECLERCK S. Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol, v. 8:1926–1934. 2006. ELIAS,K. & SAFIR,G. Hyphal elongation of Glomus fasciculatus in response to root exudates. Appl. Envirom Microbiol., v. 53: 1928-1933. 1987. FAÇANHA, A. R.; FAÇANHA, A.; OLIVARES, F. L.; GURIDI, F.; SANTOS, G. A.; VELLOSO, A. C. X.; RUMJANEK, V. M.; BRASIL, F.; SCHRISPEMA, J.; BRAZ-FILHO, R.; OLIVEIRA, M. A.; CANELLAS, L. P. Bioatividade de ácidos húmicos: Efeitos sobre o desenvolvimento radicular e sobre a bomba de prótons da membrana plasmática. Pesq. Agropec. Bras., v. 37, p. 1301-1310, 2002. FISK, H. J.; DANDEKAR, A. M. The introduction and expression of transgenes in plants. Sci. Hort., v. 55, p. 5-36, 1993. FLORES, H. E. Plant roots as chemical factories. Chem. Ind., v. 10: 374-377, 1992. FLORES, H. E. & CURTIS, W. R. Approaches to understanding and manipulating the byosyntetic potential of plant roots. Ann. N. Y. Acad. Sci, v. 665, p. 188-209, 1992. FLORES, H. & FILNER P. Metabolic relationships of putriscine GABA and alkaloids in cell and root cultures of Solanaceae. In: NEUMANN, K.; BARZ, W.; REINHARD, E. (Eds.). Primary and Secondary Metabolism of Plant Cell Cultures. Berlin: Springer-Verlag. p. 174- 185, 1985. FONSECA HMAC, BERBARA RLL & PEREIRA ML. Lunularia cruciata a potential in vitro host for Glomus proliferum and G. intraradices. Mycorrhiza, v. 16: 503-8. 2006. FONSECA, H. M. A. C. Some aspects of the physiology of endomycorrhizal plants with associated nitrogen fixing bacteria. Tese Ph.D, University of Dundee, 1994, 187 pp. FONSECA, H.M.A.C & BERBARA, R.L.L. Does Lunularia cruciata form symbiotic relationships with either Glomus proliferum or G. intraradices? Mycological Research, v. 112: 1063-1068. 2008 FONSECA,H.M.A.C.; FERREIRA,J.I.L; BERBARA, R.L.L. & ZATORRE,N.P. Dominance of paris-type morphology on mycothallus of Lunularia cruciata colonized by Glomus proliferum. Brazilian Journal of Microbiology, v. 40:96-101. 2009. 63 FORTIN, J.A.; BÉCARD, G.; DECLERCK, S.; DALPÉ, Y.; ST. ARNAUD, M.; COUGHLAN, A.P. & PICHÉ, Y. Arbuscular mycorrhiza on root-organ cultures. Can J Bot., v. 80:1–20. 2002 GADKAR,V. & ADHOLEYA,A. Intraradical sporulation of AM Gigaspora margarita in long-term axenic cultivation in Ri T-DNA carrot root. Mycol. Res., v. 104 (6): 716-721. 2000. GEMMA,J. & KOSKE,R. Seasonal variation in spore abundance and dormancy of Gigaspora gigantea and in mycorrhizal inoculums potential of a dune soil. Mycologia, v. 80: 211-216. 1988. GERDEMANN, J. W. & TRAPPE, J. M. The Endogonaceae of the Pacific Northwest. Micologie Memoir, v. 5: 1 – 76. 1974. GERDEMANN, J.W. & NICOLSON, T.H. Spores of mycorrhyzal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, Cambridge, Inglaterra, v.46, p.234-244, 1963. GIOVANETTI, M.; MOSSE, B. An evaluation of techniques of measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, v. 84, p. 484-500, 1980. GOFFINET, B & SHAW, A.J. (Ed) Bryophyte Biologt. 2.ed. Cambridge. 2008. GOTO, B.T. & MAIA, L. C. Glomerospores: a new denomination for the spores of Glomeromycota, a group molecularly distinct from the Zygomycota. Mycotaxon, v. 96, 129-132. 2006. GOTO, B.T. Taxonomia de Glomeromycota: revisão morfológica, chaves dicotômicas e descrição de novos táxons. Tese de Doutorado – UFPE. 2009. 357 p. GRYNDLER, M.; HRŠELOVÁ, H.; SUDOVÁ, R.; GRYNDLEROVÁ, H.; REZÁCOVÁ, V.; MERHAUTOVÁ, V. Hyphal growth and mycorrhiza formationby the arbuscular mycorrhizal fungus Glomus claroideum BEG23 is stimulated by humic substances. Mycorrhiza, v. 15:483–488. 2005. GRYNDLER, M.; HRSELOVÁ, H.; CAJTHAML, T.; HAVRÁNKOV, M.; REZÁCOVÁ, V.; GRYNDLEROVÁ, H. & LARSEN, J. Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, v. 19: 255-266. 2009. GUILLON, S.; TRÉMOUILLAUX-GUILLER, J.; PATI, P. K.; RIDEAU, M.; GANTET, P. Hairy root research: recent scenario and exciting prospects. Current Opinion in Plant Biology, v. 9, p. 341-346. 2006. GUMINSKI, S. Present days view on physiological effects induced in plant organisms by humic compounds. Soviet Soil Science, Washington, v. 9, p. 1250-1255, 1968. HEINRICHS, J.; HENTSCHEL, J.; WILSON, R.; FELDBERG, K. & SCHNEIDER, H. Evolution of leafy liverworts (Jungermannniidae, Marchantiophyta): estimating divergence times from chloroplast DNA sequences using penalized likelihood with integrated fossil evidence. Taxon, v. 56: 31–44. 2007. HEPPER, C. Techiniques for studying the infection of plants by vesicular-arbuscular mycorrhizal fungi under axenic conditions. New Phytol. 88:641-647. 1981. HIBBETT, D.S.; BINDER, M.; BISCHOFF, J.F.; BLACKWELL, M..; ; CANNON, F.; ERIKSSON, O. E.; HUHNDORF, S.; JAMES, T.; KIRK, P.M.; LUCKING, R.; THORSTEN LUMBSCH, H.; LUTZONI, F.; MATHENY, P.B.; MCLAUGHLIN, D.J.; POWELL, M.J.; REDHEAD, S.; SCHOCH,C.L.; SPATAFORA, J.W.; STALPERS, J.A.; VILGALYS, R.; AIME, M.C.; APTROOT, A.; BAUER, R.; BEGEROW, D.; BENNY, G.L..; 64 CASTLEBUR, L.A.; CROUS,P.W.; DAI, Y-C.; GAMS,W.; GEISER,D.M.; GRIFFITH,G.W.; GUEIDAN,C.; HAWKSWORTH,D.L.; HESTMARK,G.; HOSAKA,K.; HUMBER, R.A.; HYDE,K. D.; IRONSIDE, J.E.; KOLJALG, U.; KURTZMAN, C.P.; LARSSON, K-H.; LICHTWARD, R. T.; LONGCORE, J.; MIA DLIKOWSKA, J.; MILLER,A.; MONCALVO, J-M.; MOZLEY-STANDRIDGE, F.; OBERWINKLER,F.; PARMASTO, E.; REEB,V.; ROGERS, J.D.; ROUX,C. RYVARDEN, L.; SAMPAIO, J.S.; SCHUSSLER, A.; SUGIYAMA, J.; THORN, R.G.; TIBELL, L.; UNTEREINER, W.A.; WALKER,C.; WANG, Z.; WEIR, A.; WEISS, M.; WHITE, M.M.; WINKA , K.; YAO, Y-J.; ZHANG, N. A higher-level phylogenetic classification of the Fungi. Mycological Research 111(5): 509-547. 2007. JABAJI-HARE, S. Lipid and fatty-acid profiles of some vesicular-arbuscular mycorrhizal fungi: contribution to taxonomy. Mycologia, v. 80: 622-629. 1988. JAMES, T.Y; KAUFF, F.; SCHOCH,C.L.; MATHENY, P.B.; HOFSTETTER, V.; COX, C.J.; CELIO, G.; GUEIDAN, C.; FRAKER,E.; MIADLIKOWSKA,J.; LUMBSCH,T.; RAUHUT,A.; REEB,V.; ARBOLD, A.E.; AMTOFT,A.; STAJICH,J.A.; HOSAKA, K.; SUNG, G-H.; JOHNSON, D.; O’ROURKE, B.; CROCKETT, M.; BINDER, M.; CURTIS, J.M.; SLOT, J.E.; WANG, Z.; WILSON, A.W.; SCHUSSLER, A.; LONGCORE, J.E.; O’DONNELL, K.; MOZLEY-STANDRIDGE, S.; PORTER, D.; LETCHER, P.M.; POWELL, M.J.; TAYLOR, J.W.; WHITE, M.M.; GRIFFITH, G,W.; DAVIES, D. R.; HUMBER, R.A.; MORTON, J.B.; SUGIYAMA, J.; ROSSMAN, A.Y.; ROGERS, J.D.; PFISTER, D.H.; HEWITT, D.; HANSEN, K.; HAMBLETON, S.; SHOEMARKER,R.A.; KOHLMEYER, J.; VOLKMANN-KOLMEYER,B.; SPOTTS,R.A.; SERDANI, M.; CROUS,P.W.; HUGHES,K.W.; MATSUURA,K.; LANGER,E.; LANGER,G.; UNTEREINER,W.A.; LUCKING,R.; BUDEL,B.; GEISER,D.M.; APTROOT,A.; DIEDERICH,P.;SCHMITT,I.; SCHULTZ,M.; YAHR.; R.; HIBBETT, D.S.; LUTZONI, F.; MCLAUGHLIN, D.J.; SPATAFORA,J.W.; & VILGALYS,R. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature, v. 443: 818 – 822. 2006. JORGE, L. A. C.; CRESTANA, S. SIARCS 3.0: Novo aplicativo para análise de imagens digitais aplicado à ciência do solo. In: XII Congresso Latino Americano de Ciência do Solo; I Reunião Brasileira de Biologia do Solo; IV Simpósio Brasileiro sobre Microbiologia Do Solo; 1996, Águas de Lindóia, SP. Resumos… Águas de Lindóia, SP: USP/SLCS/SBCS, 1996. 5 p. CD ROM. JUGE,C.; SAMSON,J.; BASTIEN,C.; VIERHEILIG,H.; COUGHLAN,A. & PICHÉ, I. Breaking dormancy in spores of the arbuscular fungus Glomus intraradices: a critical coldstorage period. Mycorrhiza, v. 12:37-42. 2002. KANDULA, J.; STEWART, A.; & RIDGWAY, H.J. Monoxenic culture of the arbuscular mycorrhizal fungus Scutellospora calospora and Ri-TDNA transformed carrot roots. New Zealand Plant Protection, v. 59:97-102. 2006. KAONONGBUA, W.; MORTON, J.B. & BEVER, J.D. Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores. Mycologia, v. 102(6), 2010, pp. 1497-1509. 2010. KARANDASHOV, V.; KUZOVKINA, I.; HAWKINS, H. J.; GEORGE, E. Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza, v. 10, p. 23-28. 2000. KOSKE, R.E. & WALKER,C. Species of Gigaspora (Endogonaceae) with roughened outer walls. Mycologia, v. 77:702-720. 1985. 65 KOSKE, R.E. Multiple germinations by spores of Gigaspora gigantea. Transactions of the British Mycological Society, v. 73: 328-339. 1981. LIGRONE, R.; CARAFA, A.; LUMINI, E.; BIANCIOTTO, V.; BONFANTE, P. & DUCKETT,J.G. Glomeromycotean associations in liverworts: a molecular, cellular, and taxonomic analysis. American Journal of Botany., v. 94, p.1756–1777. 2007. LIMA, W. L. Fungos micorrízicos arbusculares: bioquímica e morfologia da interação com ácidos húmicos e sua multiplicação em aeroponia. Seropédica, 2004. 99f, Dissertação (Mestrado em Ciência do Solo) Instituto de Agronomia, UFRRJ, 2004. LIMA, W. L. Metabolismo do nitrogênio e atividades de bombas de prótons em raízes transgênicas com ácido húmico e simbiose micorrízica arbuscular. Seropédica, 2008. 173f. Tese (Doutorado em Ciência do Solo) Instituto de Agronomia, UFRRJ, 2008 LIMA, W. L.; OLIVEIRA, J. R.; SAGGIN JÚNIOR, O. J.; RAPOSO, T. P.; ALVES, G. C.; SILVA, E. M. R.; BERBARA, R. L. L. Editoração de imagens para avaliação do crescimento de plantas ou microrganismos com o programa SIARCS®. Seropédica: Embrapa Agrobiologia. 2006. 32 p. (Boletim de Pesquisa e Desenvolvimento,14). Disponível em: http://www.cnpab.embrapa.br/publicacoes/download/bot014.pdf. LOVELOCK, C.E., S.F. WRIGHT, AND K.A. NICHOLS. Using glomalin as an indicator for arbuscular mycorrhizal hyphal growth: An example from a tropical rain forest soil. Soil Biol. Biochem., v. 36, p.1009–1012. 2004. MAIA, L.C.; YANO-MELO, A.M. Germination and germ tube growth of the arbuscular mycorrhizal fungi Gigaspora albida in different substrates. Brazilian Journal of Microbiology, v. 32: 281-285. 2001. MASCIANDARO, G.; CECCANTI, B.; GARCIA, C. Soil agro-ecological management: fertirrigation and vermicompost treatments. Biores Technol, v. 59, p. 199-206. 1999. MELLONI,R. & CARDOSO, E.J.B.N. Quantificação de micélio extrarradicular de arbusculares em plantas cítricas. II. Comparação entre diferentes espécies cítricas e endófitos. R. Bras. Ci. Solo, v. 23:59-67, 1999. MIELNICZUK, J. Matéria orgânica e sustentabilidade de sistemas agrícolas. In: SANTOS, G. A.; CAMARGO, F. A. O. (Ed). Fundamentos da matéria orgânica: ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis, 2.ed. rev. atual. e ampl. p. 01-04. 2008. MILLER, R.M. & JASTROW, J.D. The role of mycorrhizal fungi in soil conservation. In: BETHLENFALVAY, G.J. & LINDERMAN, R.G., eds. Mycorrhizae in sustainable agriculture. Madison, American Society of Agronomy, p.29-44, 1992. MOREIRA, F.M.S & SIQUEIRA, J.O. Microbiologia e Bioquímica do Solo. 2.ed. atual. e ampl. LAVRAS: Editora UFLA, 2006. MORTON J.B. & MSISKA, Z. Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza, v. 20: 483-496. 2010. MORTON, J. B. Taxonomy of VA mycorrhizal fungi: Classification, nomenclature, and identification. Mycotaxon, v. 32: 267-324. 1988. MORTON, J.B. & REDECKER, D. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia, v. 93: 181-195. 2001. 66 MORTON,J.B.; FRANKE,M.;CLOUD,G. The nature of fungal species in Glomales (Zigomicetes). In: READ,D.J.; LEWIS,D.H.; FITTER,A.H.; ALEXANDER,I.J. (eds). Mycorrhizas in ecosystemas. p.65-73. 1992. MOSSE, B. Growth of endogone mycorrhiza in agar medium. Rothamsted Experimental Station Report for 1971, p.93. 1972. MOSSE, B. The estabilishment of mycorrhizal infection under aseptic conditions. Rothamsted Experimental Station Report for 1961, p. 80. 1962. MOSSE, B.; HEPPER, C. M. Vesicular-arbuscular mycorrhizal infections in root organ culture. Physiol. Plant Pathol., v. 5, p. 215-223. 1975. MUGNIER, J. & MOSSE, B. Vesicular-arbuscular mycorrhizal infection in transformed rootinducing T-DNA grown axenically. Phytopathology, v. 77 pp. 1045–1050. 1987. NARDI, S.; PIZZEGHELLOA, D.; MUSCOLO, A. & VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biol. and Biochem., v. 34: 1527–1536. 2002. NARDI, S.; CONCHERI, G.; DELL’AGNOLA, G. Biological activity of humic substances. In: PICCOLO, A. (Ed.), Humic Substances in Terrestrial Ecosystems. Elsevier, Amsterdam, p. 361-406. 1994. NARDI, S.; MUSCOLO, A.; VACCARO, S.; BAIANO, S.;SPACCINI, R.; PICCOLO, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology & Biochemistry, v. 39, p. 3138–3146. 2007. NEBEL, M.; KREIER, H.P.; PREUSSING, M.; WEISS, M.; KOTTKE, I. Symbiotic fungal associations of liverworts are the possible ancestors of mycorrhizae. In: AGERER, R.; PIEPENBRING, M.; BLANZ, P. (eds). Frontiers in Basidiomycote Mycology. IHW-Verlag, Munchen ,Germany, pp. 339–360. 2004. NUNES, M. de S. Fungos micorrízicos arbusculares em porta enxertos de citrus. Dissertação Mestrado, Cruz das Almas: Bahia, 79p. 2004. Disponível em: <http://www.ufba.br/tedesimples//tde_busca/arquivo.php?codArquivo=42>. Acesso em: 20 abril. 2010. OEHL, F.; DE SOUZA, F.A. & E. SIEVERDING. Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza forming Glomeromycetes. Mycotaxon, v.106: 311-360. 2008. OEHL, F; SYKOROVA, Z; REDECKER, D; WIEMKEN, A & SIEVERDING, E. Acaulospora alpina,a new arbuscular mycorrhizal fungal species characteristic for high mountainous and alpine regions of the Swiss Alps. Mycologia, v. 98: 286 – 294. 2006. PALENZUELA, J.; FERROL, N.: BOLLER, T.; AZCON-AQUILAR, C.; OEHL, F. Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub-land in the Natural Park of Sierra de Baza (Granada, Spain). Mycologia, v. 99: 296-305. 2008 PASZKOWSKI, U. A journey through signaling in arbuscular mycorrhizal symbioses. New Phytologist, v. 172, p. 35–46, 2006. PHILLIPS, J.M. The estabilishment of mycorrhizal infection under aseptic conditions. Rothamsted Experimental Station Report for 1970, p. 88. 1971. PONS, F. & GIANINAZZI-PEARSON, V. Observations on extrametrical vesicles of Gigaspora margarita in vitro. Trans Br Mycol Soc., v. 84: 168-170. 1985. POULIN, M.J.; BEL-RHLID, R.; PICHE, Y. & CHENEVERT, R. Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular 67 mycorrhizal fungi in the presence of optimal CO2 enrichment. J. Chem. Ecol., v. 10:2317– 2327. 1993. PURIN, S.; RILLIG, M. C. Immuno-cytolocalization of glomalin in the mycelium of arbuscular mycorrhizal fungus Glomus intraradices. Soil Biology and Biochemistry, v. 40, p. 1000–1003. 2008. PURIN, S.; RILLIG, M.C. The arbuscular mycorrhizal fungal protein glomalin: Limitations, progress, and a new hypothesis for its function. Pedobiologia 51, 123-130. 2007. PURIN, S. & KLAUBER FILHO,O. Glomalina: nova abordagem para entendermos a biologia dos fungos micorrízicos arbusculares. In: SIQUEIRA, J.O.; SOUZA, F.A.; CARDOSO, E.J.B.N. & TSAI, S.M. Micorrizas: 30 anos de pesquisa no Brasil. p.503-524. Lavras, 2010. PURIN, S. Fungos micorrízicos arbusculares: atividade,diversidade e aspectos funcionais em sistemas de produção de maçã. Dissertação de Mestrado. Lages, UDESC, 2005. 147p. QIU, Y.L.; LI, L.; WANG, B. The deepest divergences in land plants inferred from phylogenomic evidence. Proceedings of the Natural Academy of Science, USA, v. 103: 15511–16. 2006. RABATIN, S.C. The occurrence of the vesicular-arbuscular mycorrhizal fungus Glomus tenuis with moss. Mycologia, 72: 191-195. 1980. RAVEN, P.H.; EVERT, R.F.; EICHHORN, S.E. Biologia Vegetal. 5 ed. 2003. 906 p. READ, D.J. Development and function of mycorrhizal hyphae in soil. In: SYLVIA, D.M.; HUNG, L.L.; GRAHAM, J.H. (Eds.). Mycorrhizae in the next decade: practical applications and research priorities. Gainesville, Fla: [s.n.],. Proceedings of 7th North American Conference on Mycorrhizae., p.178-180. 1989. READ, D.J.; DUCKETT, J.G.; FRANCIS, R.; LIGRONE, R.; RUSSELL, A. Symbiotic fungal associations in ‘lower’ land plants. Philosophical Transactions of the Royal Society London., v. 355, pp. 815–831. 2000. READ, DJ. The mycorrhizal mycelium. In: ALLEN, M.F. (ed). Mycorrhizal functioning: An integrative plant-fungal process. Chapman and Hall, New York. pp 102-133, 1992. REDECKER, D.; KODNER, R. & GRAHAM, L. E. Glomalean fungi from the Ordovician. Science, v. 289, 1920-1921. 2000. RENZAGLIA, K.S.A. Comparative developmental investigation of the gametophyte generation in the Metzgeriales (Hepatophyta). Bryophiturum Bibliotheca, v. 24: 1–253. 2007. RENZAGLIA, K.S.; SCHUETTE, S.; DUFF, R.J.; LIGRONE, R.; SHAW, A.J.; MISHLER, B.D.; DUCKETT, J.G. Bryophyte phylogeny: Advancing the molecular and morphological frontiers. The Bryologist, v. 110, p.179-213. 2007. RHEINHEIMER, D. dos S. & KAMINSKI, J. Intensidade de colonização do córtex radicular e sua relação com a absorção de fósforo pelo capim-pensacola. Cienc. Rural [online]. 1995, vol.25, n.2, pp. 223-228. ISSN 0103-8478. doi: 10.1590/S0103-84781995000200008. RICE, J.A.; MACCARTHY, P. Statistical evaluation of the elemental composition of humic substances. Organic Geochemistry, v. 17, p. 635-648. 1991. RILLIG, M.C. A connection between fungal hydrophobins and soil water repellency. Pedobiologia, v. 49, p. 395–399. 2005. RILLIG, M.C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Canadian Journal of Soil Science, v. 28, n. 4, p. 355-363. 2004 68 RILLIG, M.C.; CALDWELL, B.A.; WOSTEN, H.A.B.; SOLLINS, P. Role of protein in soil carbon and nitrogen storage: controls on persistence. Biogeochem, v. 85, p. 25–44. 2007 RILLIG, M.C.; MAESTRE, F.T.; LAMIT, L.J. Microsite differences in fungal hyphal lenght, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biology and Biochemistry, v. 35, p. 1257-1260. 2003. RILLIG, M.C.; WRIGHT, S.F.; ALLEN, M.F.; FIELD, C.B. Rise in carbon dioxide changes soil structure. Nature, v. 400, p. 628. 1999. RILLIG, M. C.; WRIGHT, S.F.; NICHOLS, K.A.; SCHMIDT, W.F.; TORN, M.S. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils. Plant Soil, v. 233, p. 167–177. 2001. RITCHIE, J.D.; PERDUE, E.M. Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter, Geochimie Cosmochim. Acta., v. 67 : 85-96. 2003 RODDA, M.R.C.; CANELLAS, L.P.; FAÇANHA, A.R.; ZANDONADI, D.B.; GUERRA, J.G.M.; ALMEIDA, D.L.; SANTOS, G.A. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto I: efeito da concentração. Revista Brasileira de Ciência do Solo, v. 30, p. 649-656, 2006. RODDA, M.R.C.; CANELLAS, L.P.; FAÇANHA, A.R.; ZANDONADI, D.B.; ALMEIDA, D.L.; GUERRA, J.G.M.; SANTOS, G.A. Estímulo no crescimento e na hidrólise de ATP em raízes de alface tratadas com humatos de vermicomposto II: efeito da fonte de vermicomposto. Revista Brasileira de Ciência do Solo, v. 30, p. 657-664, 2006. ROMERO, A.G.F.; SIQUEIRA, J.O. Activity of flavonoids on spored of the mycorrhizal fungus Gigaspora gigantea in vitro. Pesquisa Agropecuária Brasileira, v. 31: 517-522. 1996. SAFIR, G.R. VA Mycorrhizae: an ecophysiological approach. In: SAFIR, G.R. (ed). Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, pp 1–3. 1986. SAITO, K.; YAMAZAKI, M.; MURAKOSHI, I. Transgenic medicinal plants: Agrobacterium mediated foreign gene transfer and production of secondary metabolites. Journal of Natural Products, v. 55, p. 149-62, 1992. SANTOS, G.A.; CAMARGO, F.A.O. Fundamentos da matéria orgânica: ecossistemas tropicais e subtropicais. Porto Alegre: Gênesis, 1999. 544 p. SCHENCK, N.C.; SPAIN, J.I.L.; SIEVERDING, E. & HOWELER, R.H. Several new and unreported VA mycorrhizal fungi (Endogonaceae) from Colombia. Mycologia, v. 76: 685- 699. 1984. SCHNITZER, M.; GUPTA, V.C. Determination of acidity in soil organic matter. Soil Science Society of America Proceedings, Madison, v. 27, 1965. SCHUSSLER, A.; SCHWARZOTT, D. & WALKER, C. A new phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, v. 105: 1413–1421. 2001. SCHUSSLER, A. & WALKER, C. The Glomeromycota : A species list with new families and new genera. 16 December 2010. Gloucester, England. Disponível em: www.lrz.de/~schuessler/.../species.../funneliformis_claroideoglomus_rhizophagus_redeckera. pdf. Acesso em: 15/01/2011. 2010. SCHUSSLER, A. Glomus claroideum forms an arbuscular mycorrhiza-like with hornworts Anthoceros punctatus. Mycorrhiza, v. 10, 15-21. 2000. SILVA, D.K.; FREITAS, N.O.; CUENCA, G.; MAIA, L.C. & OEHL, F. Scutellospora pernambucana, a new fungal species in the Glomeromycetes with a diagnostic germinal orb. Mycotaxon 106: 361-370. 2008. 69 SIMONEAU, P.; LOUISY-LOUIS, N.; PLENCHETTE, C.; STRULLU, D. G. Accumulation of new polypeptides in Ri T-DNA-transformed roots of tomato (Lycopersicon esculentum) during the development of vesicular-arbuscular mycorrhizae. Appl. Environmental Microbiology., v. 60. p. 1810-1813, 1994. SIQUEIRA, J. O. Cultura axênica dos fungos micorrízicos vesículo-arbusculares: ainda um desafio. Biotecnologia, Brasília, v. 24, n. 2, p. 5-9, 1989. SIQUEIRA, J.O.; SYLVIA, D.M.; GIBSON, J.; HUBBELL, D.H. Spores germination and germ tube growth of vesicular-arbuscular mycorrhizal fungi. Can. J. Bot., v. 31:965-972, 1985. SMITH, S.E.; READ, D.J. Mycorrhizal Symbiosis. Academic Press, San Diego. 1997. 605 p. SMITH, S.E.; GIANINAZZI-PEARSON, V. Physiological interactions between symbionts in vesicular-arbuscular mycorhizal plants. Ann Rev Plant Physiol Plant Mol Biol, Palo Alto, v. 39, p. 221-244, 1988. SONNTAG, C. The role of nonliving organic matter in soils. In: ANDERSON, D. W.; ZEPP, R. G.; (Ed.) The role of nonliving organic matter in the Earth’s carbon cycle. Berlin: J. Wiley, p. 81-92. 1995. SOUZA, E.S.; STARK, E.M.L.M.; BERBARA, R.L.L.; MAGALHÃES, J.R.; FERNANDES, M.S.; SOUZA, S.R. Growth, and accumulation of nitrogen and soluble sugars in growth, and accumulation of nitrogen and soluble sugars in carrot and clover hairy roots in two culture media with and without arbuscular mycorrhizal fungi. Physiology and Molecular Biology of Plants, India, v. 12, n. 1, p. 29-33. 2006. SOUZA, E.S.; STARK, E.M.L. M.; SOUZA, S.R.; FONSECA, H.M.C.; BERBARA, R.L.L. Protease activity and development in Daucus carota and Trifolium repens hairy roots in culture media containing different nitrogen source and levels. Physiology and Molecular Biology of Plants., v.8(2):251-259. 2002. SOUZA, F. A. & BERBARA, R. L. L. Desenvolvimento de esporos de Glomus clarum (Nicolson and Schenck) e raízes Ri T DNA transformadas. In: Congresso Brasileiro de Ciência do Solo, 26.; Rio de Janeiro: SBCS, 1997, 5p. Seção Temática 3. 1 CD-Rom. 1997. SOUZA, F.A. & BERBARA, R.L.L. Estudo da ontogenia da colonização e esporulação de fungos micorrízicos arbusculares (MA) em raízes transgênicas de Trifolium repens L. e Daucus carota L. Seropédica: Embrapa Agrobiologia, Nov. 1998. 20 p. (Embrapa-CNPAB. Documentos, 62). SOUZA, F.A. & DECLERCK, S. Mycelium development and architecture, and spore production of Scutellospora reticulate in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia, v. 95(6), 1004-1012. 2003. SOUZA, E.S. Efeito dos diferentes meios de cultura sobre o metabolismo de raízes transgénicas (Ri T-DNA) de cenoura (Daucus carota L.) e trevo (Trifolium repens L.) como ou sem micorriza. (Tese de doutorado: Ciência do Solo). UFRRJ, Seropédica, RJ. 1998. 155p. SOUZA, F.A. de. & BERBARA, R.L.L. Ontogeny of Glomus clarum in Ri T-DNA transformed roots. Mycologia, v. 91 (2) p. 343-350. 1999. SOUZA, F.A.; DECLERCK, S.; SMIT, E.; & KOWALCHUK, G.A. Morphological, ontogenic and molecular characterizations of Scutellospora reticulata (Glomeromycota). Mycol. Res., v. 109 (6): 697 – 706. 2005. SPAIN, J.L. & MIRANDA, J.C. Scutellospora cerradensis: an ornamented species in the Gigasporaceae (Glomales) from the cerrado region of Brazil. Mycotaxon, v. 55: 129-136. 1996. 70 STEELINK, C. Implications of elemental characteristics of humic substances. In: AIKEN, G.R.; McKNIGHT, D.M.; WERSHOW, R.L.; MACCARTHY, P. (Ed.). Humics substances in soil, sediment and water. New York: J. Wiley. p.457-476. 1985 STEVENSON, F.J. Humus chemistry: genesis, composition, reactions. 2nd ed. New York: John Wiley, 1994. 402 p. STEVENSON, F.J.; COLE, M.A. Cycles of soil, carbon, nitrogen, phosphorus, sulfur , micronutrients. New York: John Wiley & Sons, p.5-45.1999. STRULLU, D.G.; ROMAND, C. & PLENCHETTE, C. Axenic culture and encapsulation of the intraradical forms of Glomus spp. World Journal of Microbiology and Biotecnology., v.7, 292-297. 1991. SWIFT, R.S. Organic matter characterization. In: SPARKS, D. L.; PAGE, A. L.; HELMKE, P. A.; LOEPPERT, R. H.; SOLTANPOUR, P. N.; TABATABAI, M. A.; JOHNSTON, C. T.; SUMNER, M. E. (Eds.) Methods of soil analysis: chimical methods. Vol. 3. Soil Science Society of America; American Society of Agronomy, Madison. (SSSA. Book Series, 5). p. 1011-1020. 1996. SYLVIA, D.M.; JARSTFER, A. G. Production of inoculum and inoculation with arbuscular Mycorrhizal fungi. In: ROBSON, A.D.; ABBOTT, L.K.; MALAJCZUK, N. (Ed.) Management of mycorrhizas in agriculture, horticulture and forestry. Netherlands: Kluwer, p. 231-238. 1994. TAN, K. H. Humic matter in soil and the environment: principles and controversies. New York basel, New York: Marcel Dekker, INC., 386p. 2003. THAXTER, R. A revision of Endogonaceae. Proceedings of the American Academy of Art and Sciences, v. 57: 291 – 351. 1922. TOMMERUP, I.C.; KIDBY, D.K. Production of aseptic spores of vesicular-arbuscular endophytes and their viability after chemical and physical stress. Applied and Environmental Microbiology, v. 39, p. 1111-1119. 1980. TOMMERUP, I. Spore dormancy in vesicular-arbuscular mycorrhizal fungi. Trans Br Mycol Soc., v. 81:37-45. 1983. TRAPPE, J.M. What is a mycorrhiza? In: AZCON-AGUILAR, C.; BARREA, J.M. (eds) Mycorrhiza in integrated systems–from genes to plant development. Proceedings of the 4th European Symposium on Mycorrhizae, EC Report EUR 16728, Luxembourg, pp 3–6. 1996. TRAPPE, J.M. Three new Endogonaceae: Glomus constrictus, Sclerocystis clavispora and Acaulospora scrobiculata. Mycotaxon, v. 6: 359-366. 1977. TRESEDER, K.K. Nutrient acquisition strategies of fungi and their relation to elevated atmospheric CO2. p. 713–731. In: DIGHTON, J.;WHITE, J.F. & OUDEMANS, F. (ed.) The fungal community: Its organization and role in the ecosystem. 3rd ed. CRC Press, Boca Raton, FL. 2005. TRESEDER, K.K. & TURNER, K.M. Glomalin in Ecosystems. SSSAJ: Volume 71: Number 4 August 2007. 2007. TROUVELOT, A.; KOUGH, J.L.; GIANINAZZI-PEARSON, V. Mesure du taux de mycorrhization VA d’un système radiculaire. Recherche de methods d’estimation ayant une signification fonctionelle. In: GIANINAZZI-PEARSON, V.; GIANINAZZI, S. (Ed) Physiological and genetical aspects of mycorrhiza. INRA, Paris. p. 101-109. 1986. 71 VOETS, L.; DUPRÉ DE BOULOIS, H.; RENARD, L.; STRULLU, D.G. & DECLERCK, S. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett., v. 248:111–118. 2005. VOETS, L.; GOUBAU, I.; OLSSON, P.A; MERCKX, R. & DECLERCK, S. Absence of carbon transfer between Medicago truncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm. FEMS Microbiol Ecol., v, 65:350–360. 2008. VOETS, L.; PROVIDENCIA, E.; FERNANDEZ, K.; IJDO, M.; CRANENBROUCK, S.; & DECLERCK, S. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, v. 19: 327-356. 2009. WALKER, C. & SANDERS, F.E. Taxonomic concept in the Endogonaceae: III. The separation of Scutellospora gen. nov. from Gigaspora Gerd. & Trappe. Mycotaxon, v. 27: 169 – 182. 1986. WALKER, C. Ambispora and Ambisporaceae resurrected. Mycological Research, v. 112: 297 - 298. 2008. WANG, B. & QIU, Y.L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza, v. 16:299-363. 2006. WELLMAN, C.H.; OSTERLOFF, P. & MOHLUDDIN, U. Fragments of the earliest land plants. Nature,v. 425:282–5. 2003. WRIGHT, S.F. A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi. Plant and Soil, v. 226, p. 171–177. 2000. WRIGHT, S.F.; FRANKE-SNYDER, M.; MORTON, J.B.; UPADHYAYA, A. Timecourse study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, v. 181, p. 193-203. 1996. WRIGHT, S.F.; STARR, J.L.; PALTINEANU, I.C. Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Science Society of America Journal, v. 63, p. 1825-1829. 1999. WRIGHT, S.F.; UPADHYAYA, A. Quantification of arbuscular mycorrhizal fungi activity by the glomalin concentration on hyphal traps. Mycorrhiza, v. 8, p. 283–285. 1999. WRIGHT, S.F. & A. UPADHYAYA. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil, v. 198:97–107. 1998. WRIGHT, S.F.; MORTON, J.B. & SWOROBUK, J.E. Identification of vesicular-arbuscular mycorrhizal fungus by using monoclonal antibodies in an enzyme-like immunosorbent assay. Appl. Environ. Microb., v. 53:2222-2225,1987. WRIGHT, S.F.; UPADHYAYA, A. & BUYER, J.S. Comparison of N-linked oligosaccharides of glomalin from arbuscular mycorrhizal fungi and soils by capillary eletrophoresis. Soil Biol. Biochem., v. 30: 1853-1857, 1988. ZAMBOLIN, L.; REIS, M. A.; COSTA, L. M. Substratos para a multiplicação de inóculo do fungo micorrízico vesículo-arbuscular Glomus etunicatum. Fitopatologia Brasileira, Brasília, v. 17, p. 28-31, 1992. ZAMBRYSKI, P.; TEMPÉ, J.; SCHELL, J. Transfer and function of T-DNA genes from Agrobacterium Ti and Ri plasmids in plants. Cell, v. 56:193-201, 1989. ZANDONADI, D. B.; CANELLAS, L. P.; FAÇANHA, A. R. Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, v. 225, p. 1583-1595, 2007.por
dc.rightsAcesso Abertopor
dc.subjectMonoxenic cultureeng
dc.subjectHumic Substanceseng
dc.subjectCultivopor
dc.subjectMonoxênicopor
dc.subjectSubstâncias Húmicaspor
dc.subjectEsporulaçãopor
dc.subjectSporulationpor
dc.subject.cnpqAgronomiapor
dc.titleFungos micorrízicos arbusculares em briófitas e raízes modificadas de manjericão (Ocimum basilicum L.) in vitroNobrepor
dc.title.alternativeArbuscular mycorrhizal fungi (AMF) in bryophytes and basil (Ocimum basilicum L.) genetic modified roots in vitroeng
dc.typeDissertaçãopor
Appears in Collections:Mestrado em Agronomia - Ciência do Solo

Files in This Item:
File Description SizeFormat 
2011 - Camila Pinheiro Nobre.pdfCamila Pinheiro Nobre2.65 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.