???item.export.label??? ???item.export.type.endnote??? ???item.export.type.bibtex???

Please use this identifier to cite or link to this item: https://tede.ufrrj.br/jspui/handle/jspui/5731
Full metadata record
DC FieldValueLanguage
dc.creatorGonçalves, Rafaela de Sousa Gomes-
dc.creator.Latteshttp://lattes.cnpq.br/8272767898950350por
dc.contributor.advisor1Araújo, Francisco Gerson-
dc.contributor.referee1Camara, Ellen Martins-
dc.contributor.referee2Rodrigues, Fabio Lameiro-
dc.contributor.referee3Albrecht, Mírian Pilz-
dc.contributor.referee4Pessanha, André Luiz Machado-
dc.contributor.referee5Franco, Taynara Pontes-
dc.date.accessioned2022-06-02T19:59:20Z-
dc.date.issued2021-12-15-
dc.identifier.citationGONÇALVES, Rafaela de Sousa Gomes. Baía de Sepetiba: avaliação espaço-temporal da ictiofauna e suas relações ambientais. 2021. 64 f. Tese (Doutorado em Biologia Animal) - Instituto de Ciências Biológicas e da Saúde, Departamento de Biologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.por
dc.identifier.urihttps://tede.ufrrj.br/jspui/handle/jspui/5731-
dc.description.resumoOs ambientes estuarinos de águas rasas apresentam muitos habitats que favorecem a colonização e o uso por diferentes espécies de peixes. Esses ecossistemas costeiros estão sendo cada vez mais influenciados por impactos decorrentes dos avanços industriais e urbanos ao seu entorno, resultando numa crescente perda de biodiversidade, podendo ser acompanhada pela perda de importantes funções ecológicas. Investigar os padrões e os processos que atuam na biodiversidade é essencial para obter uma visão mais dinâmica e dos papéis das comunidades nos ecossistemas, e para isto, estudos de curto e longo prazo são fundamentais. Estudos abordando não só a estrutura taxonômica, como também uma abordagem mais integrada, são importantes para compreender a dinâmica e papéis dos grupos funcionais no espaço e no tempo. O presente estudo, dividido em dois capítulos, visa compreender a dinâmica espaço-temporal da ictiofauna de áreas rasas em uma baia tropical em crescente processo de alteração ambiental, explorando aspectos taxonômicos e funcionais. No capítulo 1, buscamos descrever a relação entre a diversidade beta e a heterogeneidade ambiental, a fim de testar a hipótese de que a heterogeneidade ambiental influencia a biodiversidade. Foi detectada uma fraca relação positiva entre a heterogeneidade ambiental e a diversidade beta, sugerindo que ambientes mais heterogêneos tendem a apresentar maiores variações na composição biológica. No capítulo 2, avaliamos as alterações temporais (1983-1985, 1999-2001 e 2017-2019) nos índices taxonômicos e funcionais. Estudos anteriores relataram um declínio na riqueza de peixes nas zonas rasas da Baía de Sepetiba, mas a investigação de que forma os grupos funcionais estão sendo afetados, ainda não foi investigada. Testamos a hipótese de que os índices de diversidade funcional também mudaram ao longo do tempo, como resultado das alterações ambientais sofridas nas últimas décadas. Observamos uma diminuição substancial na riqueza de espécies e abundância nos períodos mais recentes, em comparação com 1983-1985. Entretanto, a estrutura funcional permaneceu relativamente estável, com exceção da riqueza funcional, que apresentou uma queda significativa, indicando impacto na quantidade de espaço funcional ocupado pela comunidade local, de forma que alguns dos recursos potencialmente disponíveis para a comunidade deixaram de ser utilizados. A estabilidade observada nos descritores funcionais pode ser explicada porque ambientes estuarinos tendem a apresentar elevada redundância funcional devido às restrições impostas pelo marcado gradiente ambiental, o que podem resultar na convergência de traços funcionais entre espécies, garantindo que, apesar das perdas na riqueza e abundância de espécies, as principais funções podem ser mantidas. As informações obtidas no presente estudo confirmam que uso de índices funcionais é essencial para complementar as avaliações taxonômicas, dando uma visão detalhada da dimensão da perda de biodiversidade em ambientes impactados.por
dc.description.abstractShallow water estuarine environments have many habitats that favor colonization and use by different fish species. These coastal ecosystems are undergoing increasingly impacts resulting from industrial and urban developments in their surroundings, resulting in a growing loss of biodiversity, which may be accompanied by the losses of important ecological functions. Investigating the patterns and processes that act on biodiversity is essential to obtain a more view of the dynamics and roles of communities in the ecosystems, and for this, short and long-term studies are essential. Studies have mainly addressed the taxonomic structure, requiring a more integrated approach, aiming to understand the dynamics and roles of functional groups in space and time. The present study, divided into two chapters, aims to understand the spatiotemporal dynamics of the ichthyofauna of shallow areas in a tropical bay in a growing process of environmental change, exploring taxonomic and functional aspects. In chapter 1, we seek to describe the relationship between beta diversity and environmental heterogeneity, in order to test the hypothesis that environmental heterogeneity influences biodiversity. A weak positive relationship between environmental heterogeneity and beta diversity was detected, suggesting that more heterogeneous environments tend to have greater variations in biological composition. In Chapter 2, we assess temporal changes (1983-1985, 1999-2001, and 2017-2019) in taxonomic and functional indices. Previous studies have already reported a decline in the fish richness in the shallow areas of Sepetiba Bay, but the investigation of how the functional groups have been affected has not yet been investigated. We tested the hypothesis that functional diversity indices also changed over time, as a result of environmental changes in the recent decades. We found a substantial decrease in species richness and abundance in more recent periods compared to 1983-1985. However, the functional structure remained relatively stable, with the exception of functional richness, which showed a significant decrease, indicating an impact on the amount of functional space occupied by the local community, so that some of the resources potentially available to the community were no longer used. The stability observed in the functional descriptors can be explained by the fact that estuarine environments tend to have high functional redundancy due to the restrictions imposed by the marked environmental gradient, which can result in the convergence of functional traits between species, ensuring that, despite losses in richness and abundance of species, the main functions can be maintained. The information obtained in this study confirms that the use of functional indices is essential to complement taxonomic assessments, giving a detailed view of the extent of biodiversity loss in impacted environments.eng
dc.description.provenanceSubmitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-06-02T19:59:19Z No. of bitstreams: 1 2021 - Rafaela de Sousa Gomes Gonçalves.pdf: 1745899 bytes, checksum: 319d09462f752f6d1a5258c34928e326 (MD5)eng
dc.description.provenanceMade available in DSpace on 2022-06-02T19:59:20Z (GMT). No. of bitstreams: 1 2021 - Rafaela de Sousa Gomes Gonçalves.pdf: 1745899 bytes, checksum: 319d09462f752f6d1a5258c34928e326 (MD5) Previous issue date: 2021-12-15eng
dc.description.sponsorshipCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.thumbnail.urlhttps://tede.ufrrj.br/retrieve/69589/2021%20-%20Rafaela%20de%20Sousa%20Gomes%20Gon%c3%a7alves.pdf.jpg*
dc.languageporpor
dc.publisherUniversidade Federal Rural do Rio de Janeiropor
dc.publisher.departmentInstituto de Ciências Biológicas e da Saúdepor
dc.publisher.countryBrasilpor
dc.publisher.initialsUFRRJpor
dc.publisher.programPrograma de Pós-Graduação em Biologia Animalpor
dc.relation.references- INTRODUÇÃO GERAL: ABLE KW. 2005. A re-examination of fish estuarine dependence: Evidence for connectivity between estuarine and ocean habitats. Estuarine, Coastal and Shelf Science 64, 5–17. DOI: 10.1016/j.ecss.2005.02.002 ARAÚJO DF, PERES LGM, YEPEZ S, MULHOLLAND DS, MACHADO W, TONHÁ M, GARNIER J. 2017. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data, Comptes Rendus Geoscience 349, 290–298. DOI: 10.1016/j.crte.2017.09.007 ARAUJO FG, AZEVEDO MCC, SILVA MA, PESSANHA ALM, GOMES ID, CRUZ-FILHO AG. 2002. Environmental influences on the demersal fish assemblages in the Sepetiba Bay, Brazilian Estuaries 25, 441–450. DOI: 10.1007/BF02695986 ARAUJO FG, PINTO SM, NEVES LM, AZEVEDO MCC. 2016. Inter-annual changes in fish communities of a tropical bay in southeastern Brazil: What can be inferred from anthropogenic activities? Marine Pollution Bulletin 114, 102–113. DOI: 10.1016/j.marpolbul.2016.08.063 AZEVEDO MCC, GOMES-GONÇALVES RS, MATTOS TM, UEHARA W, GUEDES GHS, ARAÚJO FG. 2017. Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. Marine Environmental Research 129, 180–188. DOI: 10.1016/j.marenvres.2017.05.007 BASELGA A. 2010. Partitioning the turnover de espécies and aninhamento components of beta diversity. Global Ecology and Biogeography 19, 134–143. DOI: 10.1111/j.1466-8238.2009.00490.x BRANDL SJ, EMSLIE JMJ, CECCARELLI DM, RICHARDS ZT. 2016. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557. DOI: 10.1002/ecs2.1557 CLARKE C, HILLIARD R, DE JUNQUEIRA AOR, DE NETO ACL, POLGLAZE J, RAAYMAKERS S. 2004. Ballast water risk assessment, Port of Sepetiba, Federal Republic of Brazil, final report. GloBallast Monograph Series No. 14. IMO, London CLOERN JE, JASSBY AD, SCHRAGA TS, NEJAD E, MARTIN C. 2017. Ecosystem variability along the estuarine salinity gradient: Examples from long-term study of San Francisco Bay. Limnology and Oceanography 62, 272–291. DOI: 10.1002/lno.10537 COSTA LC, FERREIRA AP, NEVES EB. 2011. Aplicação do Sistema de Projeção de Poluição Industrial (Modelo IPPS) na bacia hidrográfica da Baía de Sepetiba (Rio de Janeiro, Brasil): estudo de caso. Caderno Saúde Coletiva 19(1), 66–73. COSTANZA R, GROOT R, SUTTON P, VAN DER PLOEG S, ANDERSON S, FARBER S, TURNER R. 2014. Changes in the global value of ecosystem services. Global Environmental Change, 26, 152–158. DOI: 10.1016/j.gloenvcha.2014.04.002 DIAZ S, CABIDO M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16, 646–655. DOI: 10.1016/S0169-5347(01)02283-2 ELLIOTT M, MCLUSKY DS. 2002. The need for definitions in understanding estuaries. Estuarine, Coastal and Shelf Science 55, 815–827. DOI: 10.1006/ecss.2002.1031 ELLIOTT M, WHITFIELD AK, POTTER IC, BLABER SJM, CYRUS DP, NORDLIE FG, HARRISON TD. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries 8, 241–268. DOI: 10.1111/j.1467-2679.2007.00253.x FLYNN DFB, MIROTCHNICK N, JAIN M, PALMER MI, NAEEM S. 2011. Functional and phylogenetic diversity as predictors of biodiversity- Ecosystem-function relationships. Ecology 92, 1573-81. DOI: 10.1890/10-1245.1 FUNDAÇÃO RIO-ÁGUAS. 2020. Rios de Janeiro: Um manual dos rios, canais e corpos hídricos da cidade do Rio de Janeiro. Disponível em: http://www.rio.rj.gov.br/ GOMES FC, GODOY JM, GODOY MLDP, CARVALHO ZL, LOPES RT, SANCHEZ-CABEZAD JA, LACERDA LD, WASSERMAN JC. 2009. Metal concentrations, fluxes, inventories and chronologies in sediments from Sepetiba and Ribeira Bays: a comparative study. Marine Pollution Bulletin 59, 123–133. DOI: 10.1016/j.marpolbul.2009.03.015 GOMES-GONÇALVES RS, AGUIAR FS, AZEVEDO MCC, ARAÚJO FG. 2020. Functional stability despite anthropogenic influences on the ichthyofauna of a tropical bay. Marine Environmental Research 159, 1–10. DOI: 10.1016/j.marenvres.2020.105016 HEINO J, MELO AS, BINI LM. 2015. Reconceptualising the beta diversity environmental heterogeneity relationship in running water systems. Freshwater Biology 60, 223–235. DOI: 10.1111/fwb.12502 HUGHES T, BAIRD A, BELLWOOD D, CARD M, CONNOLLY S, FOLKE C, GROSBERG R, HOEGH-GULDBERG O, JACKSON J, KLEYPAS J, LOUGH J, MARSHALL P, NYSTRÖM M, PALUMBI S, PANDOLFI J, ROSEN B, ROUGHGARDEN J. 2003. Climate Change, Human Impacts, and the Resilience of Coral Reefs. Science 301, 929–933. DOI: 10.1126/science.1085046 INEA. 2012. Reconstituição da orla resgata o lazer na praia de Sepetiba. Disponível em: http://www.inea.rj.gov.br/Portal/Noticias/OBRA_ESGOTAMENTOSANITMAROMBA. Acesso em 27/03/2020 ISLAM S, HIBINO M, TANAKA M. 2006. Distribution and diets of larval and juvenile fishes: Influence of salinity gradient and turbidity maximum in a temperate estuary in upper Ariake Bay, Japan. Estuarine, Coastal and Shelf Science 68, 62–74. DOI: 10.1016/j.ecss.2006.01.010 JANKOWSKI JE, CIECKA AL, MEYER NY, RABENOLD KN. 2009. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. Journal of Animal Ecology 78, 315–327. DOI: 10.1111/j.1365-2656.2008.01487.x LAURINO IRA, SERAFINI TZ, COSTA TM, CHRISTOFOLETTI R A. 2021. The role of estuarine macrofaunal patterns for the management of marine protected areas in a changing world. Journal for Nature Conservation 63, 126042. DOI: 10.1016/j.jnc.2021.126042 LEAL NETO AC, LEGEY LFL, GONZÁLEZ-ARAYA MC, JABLONSKI S. 2006. A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil. Environmental Management 38, 879–888. DOI: 10.1007/s00267-005-0211-5 LEGENDRE P. 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324–1334. DOI: 10.1111/geb.12207 LEGENDRE P, DE CÁCERES M. 2013. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecology Letters, 16, 951–963. DOI: 10.1111/ele.12141 LOTZE HK, LENIHAN HS, BOURQUE BJ, BRADBURY RH, COOKE RG, KAY MC, JACKSON JB. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809. DOI: 10.1126/science.1128035 MACÁRIO BS, OLÍMPIO MS, SALES NS, PESSANHA ALM. 2021. The effect of habitat structure and the interactions between four juvenile fishes and zooplankton-prey in a tropical estuary. Estuarine, Coastal and Shelf Science 261, 107528. DOI: 10.1016/j.ecss.2021.107528 MARTINO E, ABLE KW. 2003. Fish assemblages across the marine to low salinity transition zone of a temperate estuary. Estuarine, Coastal and Shelf Science 56, 969–987. DOI: 10.1016/S0272-7714(02)00305-0 MCKINLEY AC, DAFFORN KA, TAYLOR MD, JOHNSTON EL. 2011. High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities. PLoS One. 6, e26353. DOI: 10.1371/journal.pone.0026353 MOUILLOT D, DUMAY O, TOMASINI JA. 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuarine, Coastal and Shelf Science 71, 443–456. DOI: 10.1016/j.ecss.2006.08.022 MOUILLOT D, VILLÉGER S, SCHERER-LORENZEN M, MASON NW. 2011. Functional structure of biological communities predicts ecosystem multifunctionality. PloS One 6, e17476. DOI: 10.1371/journal.pone.0017476 ONABULE OA, MITCHELL SB, COUCEIRO F. 2020. The effects of freshwater flow and salinity on turbidity and dissolved oxygen in a shallow Macrotidal estuary: A case study of Portsmouth Harbour. Ocean & Coastal Management 191, 105179. DOI: 10.1016/j.ocecoaman.2020.105179 POTTER IC, TWEEDLEY JR, ELLIOTT M, WHITFIELD AK. 2015. The ways in which fish use estuaries: a refinement and expansion of the guild approach. Fish and Fisheries 16, 230–239. DOI: 10.1111/faf.12050 RIBEIRO AP, FIGUEIREDO AMG, SANTOS JO, DANTAS E, COTRIM MEB, FIGUEIRA RCL, SILVA FILHO EV, WASSERMAN JC. 2013. Combined SEM/AVS and attenuation of concentration models for the assessment of bioavailability and mobility of metals in sediments of Sepetiba Bay (SE Brazil). Marine Pollution Bulletin 68, 55–63. DOI: 10.1016/j.marpolbul.2012.12.023 ROOT R. 1967. The Niche Exploitation Pattern of the Blue-Gray Gnat Catcher. Ecological Monographs 37, 317–350. SEIFERLING I, PROULX R, WIRTH C. 2014. Disentangling the environmental-heterogeneity–species-diversity relationship along a gradient of human footprint. Ecology 95, 2084–2095. DOI: 10.1890/13-1344.1 SOCOLAR J, GILROY J, KUNIN W, EDWARDS D. 2016. How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Ecology & Evolution 31, 67-80. DOI: 10.1016/j.tree.2015.11.005 TEICHERT N, LEPAGE M, CHEVILLOT X, LOBRY J. 2017. Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. Journal of Biogeography. DOI: 45.10.1111/jbi.13133 VANALDERWEIRELD L, WINKLER G, FORGET-LACOURSIÈREA EL, MINGELBIER M, SIROIS P. 2020. Habitat use by early life stages of the re-established striped bass and conspecific fish species along the St. Lawrence estuary. Estuarine, Coastal and Shelf Science 237, 31. DOI: 10.1016/j.ecss.2020.106696 VILLÉGER S, MIRANDA J, FLORES-HERNANDEZ D, MOUILLOT D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Application 20(6), 1512–1522. DOI: 10.1890/09-1310.1 WHITFIELD A. 1999. Ichthyofaunal assemblages in estuaries: A South African case study. Reviews in Fish Biology and Fisheries. 9, 151–186. DOI:10.1023/A:1008994405375 WHITTAKER RH. 1972. Evolution and measurement of species diversity. Taxon 21, 213–251. DOI: 10.2307/1218190 WOLANSKI E, BOORMAN LA, CHICHARO L, LANGLOIS-SAL E, LARA R, PLATER AJ, UNCLES RJ, ZALEWSKI M. 2004. Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetlands Ecology and Management 12, 235–276. DOI:10.1007/s11273-005-4752-4. - Capítulo I: ACEVES-MEDINA G, PALOMARES-GARCÍA R, GÓMEZ-GUTIÉRREZ J, ROBINSON CJ, SALDIERNA-MARTÍNEZ RJ. 2009. Multivariate characterization of spawning and larval environments of small pelagic fishes in the Gulf of California. Journal of Plankton Research 31, 1283–1297. DOI: 10.1093/plankt/fbp056 ANDERSON MJ, CRIST TO, CHASE JM, VELLEND M, INOUYE BD, FREESTONE AL, SANDERS NJ, CORNELL HV, COMITA LS, DAVIES KF, HARRISON SP, KRAFT NJ, STEGEN JC, SWENSON, NG. 2011. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28. DOI: 10.1111/j.1461-0248.2010.01552.x ANDERSON MJ, ELLINGSEN KE, MCARDLE BH. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9, 683–693. DOI: 10.1111/j.1461-0248.2006.00926.x ANDERSON MJ, GORLEY RN, CLARKE KR. 2008. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. Primer-E, Plymouth, UK. 214 p. ARAÚJO FG, AZEVEDO MCC, GUEDES APP. 2016. Inter-decadal changes in fish communities of a tropical bay in southeastern Brazil. Regional Studies in Marine Science 3, 107–118. DOI: 10.1016/j.rsma.2015.06.001 AZEVEDO MCC, ARAÚJO FG, CRUZ-FILHO A G, GOMES I D, PESSANHA A L M. 1999. Variação espacial e temporal de bagres marinhos (Silurifomres, Ariidae) na Baía de Sepetiba, Rio de Janeiro. Revista Brasileira de Biologia 59, 443–454. DOI: 10.1590/S0034-71081999000300009 AZEVEDO MCC, ARAÚJO FG, CRUZ FILHO AG, PESSANHA ALM, SILVA MA, GUEDES APP. 2007. Demersal fishes in a tropical bay in southeastern Brazil: Partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science 75, 468–480. DOI: 10.1016/j.ecss.2007.05.027 BARCELLINI VC, PAES AT, MIRAGLIA SGK. 2021. Economic evaluation of the impacts of water quality on fishery production in the Estuary Complex of Santos, São Vicente and Bertioga cities, in southeastern coast of Brazil. Revista Brasileira de Ciências Ambientais 56, 9–110. DOI: 10.5327/Z21769478740 BASELGA A. 2010. Partitioning the substituição de espécies and aninhamento components of beta diversity. Global Ecology and Biogeography 19, 134–143. DOI: 10.1111/j.1466-8238.2009.00490.x BINI LM, LANDEIRO VL, PADIAL AA, SIQUEIRA T, HEINO J. 2014. Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95, 1569–1578. DOI: 10.1890/13-0656.1 BOWMAN RA. 1988. A rapid method to determine total phosphorus in soils. Soil Science Society of America Journal 52, 1301–1304. CAMARA EM, ANDRADE-TUBINO MF, FRANCO TP, ARAÚJO FG. 2020. Multilevel decomposition of spatial and environmental effects on nearshore fish assemblages in tropical semi-enclosed ecosystems. Estuarine, Coastal and Shelf Science 237, 106691. DOI: 10.1016/j.ecss.2020.106691 CAMARGO MG. 2006. SYSGRAN: Um sistema de código aberto para análises granulométricas. Revista Brasileira de Geociências 36, 371–378. CHASE JM. 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391. DOI: 10.1126/science.1187820 CHI Y, ZHENG W, SHI H, SUN J, FU Z. 2018. Spatial heterogeneity of estuarine wetland ecosystem health influenced by complex natural and anthropogenic factors. Science of the Total Environment 634, 1445–1462. DOI: 10.1016/j.scitotenv.2018.04.085. CLARK BM, BENNETT BA, LAMBERTH SJ. 1996. Factors affecting spatial variability in seine net catches of fish in the surf zone of False Bay, South Africa. Marine Ecology Progress y Series 131, 17–34. Clarke KR, Gorley RN. 2006. PRIMER v6: User Manual/Tutorial (Plymouth Routines in Multivariate Ecological Research). PRIMER-E, Plymouth. CLARKE RT, GORLEY RN. 2006. Primer v6. PrimerE, Plymouth. CONDINI MV, PEREYRA PER, GARCIA AM, SAINT'PIERRE TD, CENI G, LUGO R, FONTOURA NF, VIEIRA JP, ALBUQUERQUE CQ. 2019. Use of fresh water by an estuarine-resident marine catfish: Evidence from gonadal and otolith chemistry analyses. Journal of the Marine Biological Association of the United Kingdom 99, 1667–1674. DOI:10.1017/S0025315419000493 COOK S, HOUSLEY L, BACK J, KING R. 2018. Freshwater eutrophication drives sharp reductions in temporal beta diversity. Ecology. 99, 47-56. DOI: 10.1002/ecy.2069 DENADAI M, BESSA EDUARDO, SANTOS F, FERNANDEZ W, COSTA SANTOS FM, FEIJÓ M, ARCURI A, TURRA A. 2012. Life history of three catfish species (Siluriformes: Ariidae) from southeastern Brazil. Biota Neotropica. 12, 74–83. DOI: 10.1590/S1676-06032012000400008 DÍAZ G, GÓRSKI K, HEINO J, ARRIAGADA P, LINK O, HABIT E. 2021. The longest fragment drives fish beta diversity in fragmented river networks: Implications for river management and conservation. Science of The Total Environment, 766, 144323. DOI: 10.1016/j.scitotenv.2020.144323 FOLK LR, WARD WC. 1957. Brazos river bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology 27, 3–26. GOMES ID, ARAÚJO FG, AZEVEDO MCC, PESSANHA ALM. 1999. Biologia reprodutiva dos bagres marinhos Genidens genidens (Valenciennes) e Cathorops spixii (Agassiz) (Siluriformes, Ariidae), na Baía de Sepetiba, Rio de Janeiro, Brasil. Revista Brasileira de Zoologia 16, 171–180. DOI: 10.1590/S0101-81751999000600017 GUTIÉRREZ-CORTÉS A, ORTEGA JC, AGOSTINHO A. 2018. Fish beta diversity responses to environmental heterogeneity and flood pulses are different according to reproductive guild. Neotropical Ichthyology. 16. DOI: 10.1590/1982-0224-20180022 HEINO J, GRÖNROOS M, ILMONEN J, KARHU T, NIVA M, PAASIVIRTA L. 2013. Environmental heterogeneity and β-diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32, 142–154. DOI: 10.1899/12-083.1 HOPKINSON CSJ. 1987. Nutrient regeneration in shallow-water sediments of the estuarine plume region of the nearshore Georgia Bight, U.S.A. Marine Biology. 94, 127–142. HUMAN LRD, SNOW GC, ADAMS JB, BATE GC, YANG S. 2015. The role of submerged macrophytes and macroalgae in nutrient cycling: A budget approach. Estuarine, Coastal and Shelf Science 154, 169–178. DOI: 10.1016/j.ecss.2015.01.001 JOSEFSON AB, RASMUSSEN B. 2000. Nutrient retention by benthic macrofaunal biomass of Danish estuaries: Importance of nutrient load and residence time. Estuarine, Coastal and Shelf Science 50, 205–216. DOI: 10.1006/ecss.1999.0562 KOCH V, WOLFF M. 2002 Energy budget and ecological role of mangrove epibenthos in the Caeté estuary, North Brazil. Marine Ecology Progress Series 228, 119–130. DOI:10.3354/meps228119 LEAL NETO AC, LEGEY LFL, GONZÁLEZ-ARAYA MC, JABLONSKI S. 2006. A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil. Environmental Management 38, 879–888. DOI:10.1007/s00267-005-0211-5 LEGENDRE P. 2014. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324–1334. DOI: 10.1111/geb.12207 LEPS J, SMILAUER P. 2003. Multivariate analysis of ecological data using CANOCO: Cambridge University Press. LÓPEZ-DELGADO EO, WINEMILLER KO, VILLA-NAVARRO F.A. 2019. Local environmental factors influence beta diversity patterns of tropical fish assemblages more than spatial factors. Ecology. 102, e02940. DOI: 10.1002/ecy.2940 NAKASHIMA B, GASCON D, LEGGETT W. 2011. Species Diversity of Littoral Zone Fishes Along a Phosphorus–Production Gradient in Lake Memphremagog, Quebec–Vermont. Journal of the Fisheries Research Board of Canada 34, 167–170. DOI: 10.1139/f77-025. OLDEN JD, ROONEY TP. 2006. On defining and quantifying biotic homogenization. Global Ecology and Biogeography 15, 113–120. DOI: 10.1111/j.1466-822X.2006.00214.x PALMEIRA LP, MONTEIRO-NETO C. 2010. Ecomorphology and food habits of Teleost fishes Trachinotus carolinus (Teleostei: Carangidae) and Menticirrhus littoralis (Teleostei: Sciaenidae), inhabiting the surf zone of Niterói, Rio de Janeiro, Brazil. Brazilian Journal of Oceanography 58, 1–9. DOI:10.1590/S1679-87592010000800002 REIS EG. 1982. Age and growth of the marine catfish, Netuma barba (Siluriformes, Ariidae), in the Estuary of the Patos Lagoon (Brazil). Fishery Bulletin 84 (3), 679–686. SEIFERLING I, PROULX R, WIRTH C. 2014. Disentangling the environmental-heterogeneity–species-diversity relationship along a gradient of human footprint. Ecology 95, 2084–2095. DOI: 10.1890/13-1344.1 SHEPARD FP. 1954. Nomenclature based on sand– silt–clay ratios. Journal of Sedimentary Petrology 24, 151–158. SOARES CEA, VELHO LFM, LANSAC-TÔHA FA, BONECKER CC, LANDEIRO VL, BINI LM. 2015. The likely effects of river impoundment on beta-diversity of a floodplain zooplankton metacommunity Natureza & Conservação 13, 74–79. DOI: 10.1016/j.ncon.2015.04.002 SOCOLAR JB, GILROY JB, KUNIN WE, EDWARDS DP. 2016. How should beta-diversity inform biodiversity conservation? Trends in ecology & evolution 31, 67-80. DOI:10.1016/j.tree.2015.11.005 SOMARAKIS S, DRAKOPOULOS P, FILIPPOU V. 2002. Distribution and abundance of larval fish in the northern Aegean Sea - Eastern Mediterranean - In relation to early summer oceanographic conditions. Journal of Plankton Research 24, 339–357. DOI: 10.1093/plankt/24.4.339 STATSOFT INC. 2011. STATISTICA (data analysis software system), version 10. [available on internet at www.statsoft.com]. SUGUIO K. 1973. Introdução à sedimentologia. São Paulo, Edgard Blucher, 317p. SUNDBY B, GOBEIL C, SILVERBERG N, MUCCI A. 1992. The phosphorus cycle in coastal marine sediments. Limnology and Oceanography 37, 1129–1145. DOI: 10.4319/lo.1992.37.6.1129 TEICHERT N, LEPAGE M, CHEVILLOT X, LOBRY J. 2017. Environmental drivers of taxonomic, functional and phylogenetic diversity (alpha, beta and gamma components) in estuarine fish communities. Journal of Biogeography. 45, 406-417. DOI: 45.10.1111/jbi.13133. TER BRAAK CJF. 1986. Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis. Ecology 67, 1167–1179. DOI: 10.2307/1938672 TEWS J, BROSE U, GRIMM V, TIELBORGER K, WICHMANN MC, SCHWAGER M, JELTSCH F. 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31, 79–92. DOI: 10.1046/j.0305-0270.2003.00994.x VANALDERWEIRELD L, WINKLER G, FORGET-LACOURSIÈREA EL, MINGELBIER M, SIROIS P. 2020. Habitat use by early life stages of the re-established striped bass and conspecific fish species along the St. Lawrence estuary. Estuarine, Coastal and Shelf Science 237, 31. DOI: 10.1016/j.ecss.2020.106696 VEECH JA, CRIST TO. 2007. Habitat and climate heterogeneity maintain betadiversity of birds among landscapes within ecoregions. Global Ecology and Biogeography 16, 650–656. DOI: 10.1111/j.1466-8238.2007.00315.x WALKLEY A, BLACK IA. 1934. An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science 37, 29–38. DOI: 10.1097/00010694-193401000-00003 WHITFIELD AK, PATTRICK P. 2015. Habitat type and nursery function for coastal marine fish species, with emphasis on the Eastern Cape region, South Africa. Estuarine, Coastal and Shelf Science 160, 49–59. DOI: 10.1016/j.ecss.2015.04.002 WHITTAKER R. 1972. Evolution and measurement of species diversity. Taxon 21, 213–251. DOI: 10.2307/1218190 WHITTAKER R, ARAÚJO M, JEPSON P, LADLE R, WATSON J, WILLIS K. 2005. Conservation Biogeography: Assessment and prospect. Diversity and Distributions 11, 3–23. DOI: 10.1111/j.1366-9516.2005.00143.x WIERSMA YF, URBAN DL. 2005. Beta-diversity and nature reserve system design: a case study from the Yukon, Canada. Conservation Biology 19, 1262–1272. DOI: 10.1111/j.1523-1739.2005.00099.x WOLANSKI E, BOORMAN LA, CHICHARO L, LANGLOIS-SAL E, LARA R, PLATER AJ, UNCLES RJ, ZALEWSKI M. 2004. Ecohydrology as a new tool for sustainable management of estuaries and coastal waters. Wetlands Ecology and Management 12, 235–276. DOI:10.1007/s11273-005-4752-4 ZUUR AF, IENO EN, ELPHICK CS 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3−14. DOI: 10.1111/j.2041-210X.2009.00001.x - Capítulo II: ANDERSON MJ, ELLINGSEN KE, MCARDLE BH. 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9, 683–693. https://doi.org/DOI:10.1111/j.1461-0248.2006.00926.x ANDERSON MJ, GORLEY RN, CLARKE KR. 2008. PERMANOVA for PRIMER: guide to software and statistical methods. Plymouth: primer-E. available on internet at. http ://www.primer-e.com. ARAÚJO DF, PERES LGM, YEPEZ S, MULHOLLAND DS, MACHADO W, TONHA M, GARNIER J. 2017. Assessing man-induced environmental changes in the Sepetiba Bay (Southeastern Brazil) with geochemical and satellite data. Comptes Rendus Geoscience. 349, 290-298. DOI: 10.1016/j.crte.2017.09.007 ARAUJO FG, AZEVEDO MCC, GUEDES APP. 2016b. Inter-decadal changes in fish communities of a tropical bay in southeastern Brazil. Regional Studies in Marine Science 3, 107–118. https://doi.org/DOI: 10.1016/j.rsma.2015.06.001 ARAÚJO FG, AZEVEDO MCC, SILVA MA, PESSANHA ALM, GOMES ID, CRUZ-FILHO AG. 2002. Environmental influences on the demersal fish assemblages in the Sepetiba Bay, Brazil. Estuaries 25(3), 441–450. doiDOI:10.1007/BF02695986 ARAUJO FG, PINTO S M, NEVES LM, AZEVEDO MCC. 2016a. Inter-annual changes in fish communities of a tropical bay in southeastern Brazil: What can be inferred from anthropogenic activities?. Marine Pollution Bulletin 114, 102–113. https://doi.org/DOI: 10.1016/j.marpolbul.2016.08.063 AZEVEDO MCC, ARAUJO FG, CRUZ FILHO AG, PESSANHA ALM, SILVA MA, GUEDES APP. 2007. Demersal fishes in a tropical bay in southeastern Brazil: Partitioning the spatial, temporal and environmental components of ecological variation. Estuarine, Coastal and Shelf Science 75 468–480. https://doi.org/DOI: 10.1016/j.ecss.2007.05.027 BARCELLOS C, LACERDA LD. 1994. Cadmium and Zinc source assessment in the Sepetiba Bay and basin region. Environmental Monitoring and Assessment. 29, 183–199. https://doi.org/ DOI: 10.1007/BF00546874. BARLETTA M, CYSNEIROS FJA, LIMA ARA. 2016. Effects of dredging operations on the demersal fish fauna of a South American tropical-subtropical transition estuary. Journal of Fish Biology 89, 890–920. doiDOI:10.1111/jfb.12999 BARLETTA M, LIMA ARA. 2019. Systematic Review of Fish Ecology and Anthropogenic Impacts in South American Estuaries: Setting Priorities for Ecosystem Conservation. Frontiers in Marine Science. 6, 237. https://doi.org/DOI: 10.3389/fmars.2019.00237 BARROS F, BLANCHET H, HAMMERSTROM K, SAURIAU P, OLIVER J. 2014. A framework for investigating general patterns of benthic β-diversity along estuaries. Estuarine, Coastal and Shelf Science, 149, 223–231. https://doi.org/DOI: 10.1016/j.ecss.2014.08.025 BASELGA A. 2010. Partitioning the substituição de espécies and aninhamento components of beta diversity. Global Ecology and Biogeography, 19, 134–143. https://doi.org/DOI: 10.1111/j.1466-8238.2009.00490.x BASELGA A, ORME CDL. 2012. Betapart: An R package for the study of beta diversity. Methods in Ecology and Evolution. 3, 808–812. DOI: 10.1111/j.2041-210X.2012.00224.x. BRANDL SJ, EMSLIE JMJ, CECCARELLI DM, RICHARDS ZT. 2016. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557. https://doi.org/DOI: 10.1002/ecs2.1557. CAMARA EM, AZEVEDO MCC, FRANCO TP, ARAÚJO FG. 2019. Hierarchical partitioning of fish diversity and scale-dependent environmental effects in tropical coastal ecosystems. Marine Environmental Research, 148,: 26-38. https://doi.org/DOI: 10.1016/j.marenvres.2019.05.006 CARMONA CP, BELLO F, MANSON N, LEPS J. 2016. Traits Without Borders: Integrating Functional Diversity Across Scales. Trends in Ecology & Evolution, 31(5), 382–394. doi:https://doi.org/DOI: 10.1016/j.tree.2016.02.003 CLARKE, C., HILLIARD, R., DE JUNQUEIRA, A.O.R., DE NETO, A.C.L., POLGLAZE, J., RAAYMAKERS, S., 2004. Ballast water risk assessment, Port of Sepetiba, Federal Republic of Brazil. GloBallast Monograph Series No. 14. CLARKE KR, WARWICK RM. 2001. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation, second ed. Primer-E, Plymouth. COSTANZA R, ARGE R, GROOT R, FARBER S, GRASSO M, HANNON B, LIMBURG K, NAEEM S, NEILL R, PARUELO J, RASKIN R, SUTTON P, BELT M. 1997. The Value of the World's Ecosystem Services and Natural Capital. Nature, 387, 253–260. DOI: 10.1016/S0921-8009(98)00020-2. CUNHA CLN, ROSMAM PCC, FERREIRA AP, MONTEIRO TCN. 2006. Hydrodynamics and water quality models applied to Sepetiba Bay. Continental Shelf Research 26, 1940–1953. https://doi.org/DOI: 10.1016/j.csr.2006.06.010 DIAS TC, BERG MP, DE BELLO F, OOSTEN AR, BILÁ K, MORETTI M. 2013. An experimental framework to identify community functional components driving ecosystem processes and services delivery. Journal of Ecology, 101, 29–37. https://doi.org/DOI: 10.1111/1365-2745.12024 EDIE S, JABLONSKI D, VALENTINE J. 2018. Contrasting responses of functional diversity to major losses in taxonomic diversity. PNAS, 115(4), 732–737. https://doi.org/DOI: 10.1073/pnas.1717636115 ELLIOTT M, WHITFIELD AK, POTTER IC, BLABER SJM, CYRUS DP, NORDLIE FG, HARRISON TD. 2007. The guild approach to categorizing estuarine fish assemblages: a global review. Fish and Fisheries, 8, 241–268. https://doi.org/DOI: 10.1111/j.1467-2679.2007.00253.x FONTRODONA-ESLAVA A, DEACON AE, RAMNARINE IW, MAGURRAN AE. 2021. Numerical abundance and biomass reveal different temporal trends of functional diversity change in tropical fish assemblages. Journal of Fish Biology, 99(3), 1079–1086. doiDOI: 10.1111/jfb.14812 FROESE R, D PAULY D EDITORS. 2021. FishBase. World Wide Web electronic publication. www.fishbase.org, version (06/2021) GIBSON R, ROBB L. 1992. The relationship between body size, sediment grain size and the burying ability of juvenile plaice, Pleuronectes platessa L. Journal of Fish Biology, 40, 771–778. DOI: 10.1111/j.1095-8649.1992.tb02623.x. GOMES-GONÇALVES RS, AGUIAR FS, AZEVEDO MCC, ARAÚJO FG. 2020. Functional stability despite anthropogenic influences on the ichthyofauna of a tropical bay. Marine Environmental Research, 159, 1–10. https://doi.org/DOI: 10.1016/j.marenvres.2020.105016 IBARRA J, MARTIN K. 2015. Biotic homogenization: Loss of avian functional richness and habitat specialists in disturbed Andean temperate forests. Biological Conservation, 192, 418–427. DOI: 10.1016/j.biocon.2015.11.008. HARPER JL, HAWKSWORTH DL. 1994. Biodiversity: measurement and estimation. Philosophical transactions of the Royal Society of London, 345, 5–12. doiDOI: 10.1098/rstb.1994.0081 HEINO J, SOININEN J, ALAHUHTA J, LAPPALAINEN J, VIRTANEN R. 2015. A comparative analysis of metacommunity types in the freshwater realm. Ecology and Evolution, 5(7), 1525–1537. doiDOI: 10.1002/ece3.1460 JANKOWSKI J, CIECKA A, MEYER N, RABENOLD K. 2009. Beta diversity along environmental gradients: Implications of habitat specialization in tropical montane landscapes. The Journal of Aanimal Eecology, 78, 315–27. DOI: 10.1111/j.1365-2656.2008.01487.x. LANGER T, MURRY B, PANGLE K, UZARSKI D. 2016. Species substituição de espécies drives β-diversity patterns across multiple spatial and temporal scales in Great Lake Coastal Wetland Communities. Hydrobiologia., 777, 55-66. DOI: 10.1007/s10750-016-2762-2. LEAL NETO AC, LEGEY LFL, GONZÁLEZ-ARAYA MC, JABLONSKI S. 2006. A system dynamics model for the environmental management of the Sepetiba Bay watershed, Brazil. Environmental Management, 38, 879–888. doiDOI:10.1007/s00267-005-0211-5 LINDHOLM M, ALAHUHTA J, HEINO J, TOIVONEN H. 2020. Temporal beta diversity of lake plants is determined by concomitant changes in environmental factors across decades. Journal of Ecology, 109, 819-832. DOI: 10.1111/1365-2745.13508. LINDENMAYER DB, LIKENS GE, ANDERSEN A, BOWMAN D, BULL CM, BURNS E, DICKMAN CR, HOFFMANN AA, KEITH DA, LIDDELL MJ, LOWE AJ, METCALFE DJ, PHINN SR, RUSSELL-SMITH J, THURGATE N, WARDLE GM. 2012. Value of longterm ecological studies. Austral Ecology, 37, 745e757. https://doi.org/DOI: 10.1111/j.1442-9993.2011.02351.x LOREAU M, NAEEM S, INCHAUSTI P, BENGTSSON J, GRIME J, HECTOR A, HOOPER D, HUSTON M, RAFFAELLI D, SCHMID B, TILMAN D, WARDLE D. 2001. Biodiversity and Ecosystem Functioning: Current Knowledge and Future Challenges. Science (New York, N.Y.)., 294,. 804–8. doiDOI: 10.1126/science.1064088 LOTZE H, LENIHAN H, BOURQUE B, BRADBURY R, COOKE R, KAY M, KIDWELL S, KIRBY M, PETERSON C, JACKSON J. 2006. Depletion, Degradation, and Recovery Potential of Estuaries and Coastal Seas. Science, 312, 1806-9. DOI: 10.1126/science.1128035. MAGURRAN A, HENDERSON P. 2003. Explaining the excess of rare species in abundance distributions. Nature, 422,: 714–716. DOI: 10.1038/nature01547 MARINHA DO BRASIL. 2021. PROSUB. Disponível em: https://www.marinha.mil.br/prosub/institucional. Acesso em: 02/09/2021. MASON N, MOUILLOT D, LEE W, WILSON J. 2005. Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112–118. DOI: 10.1111/j.0030-1299.2005.13886.x. MOLISANI MM, MARINS RV, MACHADO W, PARAQUETTI HHM, BIDONE ED, LACERDA LD. 2004. Environmental changes in Sepetiba bay, SE Brazil. Regional Environmental Change, 4, 17–27. DOI: 10.1007/s10113-003-0060-9 MORENO CE, HALFFTER G. 2001. Spatial and temporal analysis of the alpha, beta an gamma diversities of bats in a fragmented landscape. Biodiversity and Conservation,. 10, 367–382. DOI: 10.1023/a:1016614510040 MOUCHET M, VILLÉGER S, MASON N, MOUILLOT D. 2010. Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24., 867-876. DOI: 10.1111/j.1365-2435.2010.01695.x. MOUILLOT D, GRAHAM NAJ, VILLEGER S, MANSON NWH, BELLWOOD DR. 2013. A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3), 167–177. DOI: 10.1016/j.tree.2012.10.004. PELÁEZ OE, AZEVEDO FM, PAVANELLI CS. 2017. Environmental heterogeneity explains species turnover but not nestedness in fish assemblages of a Neotropical basin. Acta Limnologica Brasiliensia 29, c117. DOI: 10.1590/S2179-975X8616 PELLEGATTI F, FIGUEIREDO AMG, WASSERMAN JC. 2001. Neutron activation analysis applied to determination of heavy metals and other trace elements in sediments from Sepetiba Bay (RJ), Brazilian Journal of Geostandards and Geoanalysis, 25(2-3), 307–315. DOI: 10.1111/j.1751-908X.2001.tb00607.x PINTO LMO, 2005. Implicações da contaminação por metais pesados no meio ambiente da Baía de Sepetiba e entorno: o caso da Cia. Mercantil Ingá. Dissertação apresentada ao Curso de Mestrado em Sistemas de Gestão da Universidade Federal Fluminense. PONTI M, PASTERIS A, GUERRA R, ABBIATI M. 2009. Impacts of maintenance channel dredging in a northern adriatic coastal lagoon. II: effects on macrobenthic assemblages in channels and ponds. Estuarine, Coastal and Shelf Science, 85, 143-150. DOI: 10.1016/j.ecss.2009.06.027 R DEVELOPMENT CORE TEAM 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. RICE J, NIELS D, GISLASON H, POPE J. 2013. Does functional redundancy stabilize fish communities? ICES Journal of Marine Science, 70, 734–742. https://doi.org/DOI: 10.1093/icesjms/ fst071. ROSENFELD JS. 2002. Functional redundancy in ecology and conservation. Oikos, 98 (1), 156–162. https://doi.org/DOI: 10.1034/j.1600-0706.2002.980116.x SOCOLAR J, GILROY J, KUNIN W, EDWARDS D. 2016. How Should Beta-Diversity Inform Biodiversity Conservation? Trends in Eecology & eEvolution, 31, 67-80. DOI: 10.1016/j.tree.2015.11.005. TEICHERT N, LEPAGE M, SAGOUIS A, BORJA A, CHUST G, FERREIRA M, PASQUAUD S, SCHINEGGER R, SEGURADO P, ARGILLIER C. 2017. Functional redundancy and sensitivity of fish assemblages in European rivers, lakes and estuarine ecosystems. Scientific Reports,. 7,. 17611. DOI: 10.1038/s41598-017-17975-x. TÖRNROOS A, PECUCHET L, OLSSON J, GÅRDMARK A, BLOMQVIST M, LINDEGREN M, BONSDORFF E. 2019. Four decades of functional community change reveals gradual trends and low interlinkage across trophic groups in a large marine ecosystem. Global Change Biology, 25(4), 1235–1246. DOI: https://doi.org/10.1111/gcb.14552 VILLEGER S, MASON NWH, MOUILLOT D. 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290–2301. DOI:https://doi.org/ 10.1890/07-1206.1 VILLEGER S, MIRANDA J, FLORES-HERNANDEZ D, MOUILLOT D. 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Application, 20(6), 1512–1522. https://doi.org/DOI: 10.1890/09-1310.1. WHITFIELD A. 1999. Ichthyofaunal assemblages in estuaries: A South African case study. Reviews in Fish Biology and Fisheries,. 9., 151–186. doiDOI: 10.1023/A:1008994405375 WHITTAKER RH. 1972. Evolution and measurement of species diversity. Taxon, 21, 213–251. DOI:doi 10.2307/1218190 WIERSMA YF, URBAN DL. 2005. Beta-diversity and nature reserve system design: a case study from the Yukon, Canada. Conservation Biology, 19, 1262–1272. http://dx.doi.org/DOI: 10.1111/j.1523-1739.2005.00099.x WRIGHT DH, REEVES JH. 1992. On the meaning and measurement of aninhamento of species assemblages. Oecologia, 92, 416–428. doi:DOI: 10.1007/BF00317469por
dc.rightsAcesso Abertopor
dc.subjectpeixes costeirospor
dc.subjectdiversidade funcionalpor
dc.subjectdiversidade betapor
dc.subjectvariáveis ambientaispor
dc.subjectcoastal fisheng
dc.subjectfunctional diversityeng
dc.subjectbeta diversityeng
dc.subjectenvironmental variableseng
dc.subject.cnpqEcologiapor
dc.titleBaía de Sepetiba: avaliação espaço-temporal da ictiofauna e suas relações ambientaispor
dc.title.alternativeSepetiba Bay: Spatial and temporal assessment of the ichthyofauna and their environmental relationshipseng
dc.typeTesepor
Appears in Collections:Doutorado em Biologia Animal

Files in This Item:
File Description SizeFormat 
2021 - Rafaela de Sousa Gomes Gonçalves.pdf1.7 MBAdobe PDFThumbnail

Download/Open Preview


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.