

Figura II.44. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **11** (*epi*-Solamargina)

Figura II.45. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **11** (*epi*-Solamargina). Regiões ampliadas: **A** (δ 0,7-1,9x14-23 ppm), **B** (δ 1,4-2,2x29-42 ppm), **C** (δ 2,6-3,2x36-50 ppm) e **D** (δ 3,6-5,0x67-83 ppm)

Figura II.46. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina)

Figura II.47. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Regiões ampliadas: **A** (δ 0,6-1,3x14-22 ppm) e **B** (δ 1,5-2,0x14-23 ppm)

Figura II.48. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Regiões ampliadas: **C** (δ 0,8-1,2x28-44 ppm), **D** (δ 4,3-5,3x15-42 ppm), **E** (δ 0,8-1,7x45-53 ppm) e **F** (δ 1,4-2,2x28-45 ppm)

Figura II.49. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Regiões ampliadas: **G** (δ 0,8-2,2x54-66 ppm), **H** (δ 1,6-1,9x66-77 ppm), **I** (δ 1,0-2,9x76-102 ppm) e **J** (δ 0,9-3,0x119-144 ppm)

Figura II.50. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Regiões ampliadas: L (δ 4,3-5,4x16-44 ppm), M (δ 3,8-5,1x96-106 ppm) e N (δ 4,2-5,1x68-81 ppm)

Figura II.51. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Região ampliada: (δ 5,8-6,9x68-81 ppm)

Figura II.52. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **11** (*epi*-Solamargina)

Figura II.53. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **11** (*epi*-Solamargina). Regiões ampliadas: **A** (δ 0,8-1,8x28-44 ppm), **B** (δ 1,0-1,8x67-83 ppm), **C** (δ 2,7-3,0x75-144 ppm) e **D** (δ 4,3-5,4x15-40 ppm)

Figura II.54. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **11** (*epi*-Solamargina). Regiões ampliadas: **E** (δ 4,2-5,0x67-80 ppm), **F** (δ 3,5-5,0x97-105 ppm) e **G** (δ 5,8-6,5x68-80 ppm)

Figura II.55. Espectro de massas de alta resolução da substância 10 (Solamargina), obtido com ionização *elétron spray* (IES) e detecção de íons positivos

Esquema II.4. Mecanismo de fragmentação proposto para justificar os picos resultantes da ionização em íons positivos detectados no espectro de massas de alta resolução da substância **10** (Solamargina)

Figura II.56. Espectro de massas de alta resolução da substância 11 (*epi*-Solamargina), obtido com ionização *elétron spray* (IES) e detecção de íons positivos

Esquema II.5. Mecanismo de fragmentação proposto para justificar os picos resultantes da ionização em íons positivos detectados no espectro de massas de alta resolução da substância **11** (*epi*-Solamargina)

II.3.2 Determinação estrutural do derivado 11a

A substância **11a** foi obtida através de reação de acetilação da solamargina (**11**). O espectro no IV (Figura II.57, pág. 149) apresenta bandas de absorção em 2.943 cm⁻¹ e 2.728 cm⁻¹ e bandas de deformação de δ_{C-H} em 1.438 cm⁻¹ e 1.374 cm⁻¹ de CH₃. Absorção intensa em 1.751 cm⁻¹ é referente a carbonila de éster e de grupo C-O em 1.045 cm⁻¹.

Os espectros de RMN de ¹H do derivado **11a** (Figuras II.58, II.59 e II.60, págs. 149 e 150) apresentam os sinais característicos de alcalóides esteroidais do tipo espirosolano: dois dubletos para duas metilas secundárias (δ_{3H} 0,92 e δ_{3H} 1,26) e dois singletos para duas metilas terciárias (δ_{3H} 0,87 e δ_{3H} 1,01). Apresentam também sinal de dupla ligação δ_{H} 5,36. A contagem do número de metilas representadas pelos singletos na região de δ_{3H} 1,98 a δ_{3H} 2,18 dos grupos acetatos permitiu incluir uma acetila no nitrogênio. Os dubletos em δ_{3H} 1,14 (*J*=6,1 Hz) e δ_{3H} 1,17 (*J*=6,1 Hz) são referentes às metilas de duas ramnoses. O hidrogênio metínico geminal ao oxigênio do anel de tetrahidrofuranico está representado pelo sinal em δ_{H} 5,06. Os hidrogênios metilênicos do carbono ligado ao nitrogênio (2H-26) têm deslocamentos químicos em δ_{H} 3,20. As interpretações dos espectros COSY (Figuras II.61 e II.62, pág. 151) e NOESY (II.63, pág. 152) foram usadas nas atribuições dos δ_{H} da substância **11**. A Tabela II.4 (pág. 148), apresenta os valores de descolamentos químicos de RMN de¹H e ¹³C.

Nos espectros de RMN de ¹³C (II.64, II.65, II.66 II.67 e II.68, págs. 153 a 155) e DEPT (II.69, II.70 e II.71, págs. 155 a 156) o deslocamento do carbono C-22 aparece em $\delta_{\rm C}$ 99,73. Na região de $\delta_{\rm C}$ 169,00-171,00 aparecem sinais para nove carbonilas de grupo acetato, as metilas ligadas a esses grupos aparecem na região de $\delta_{\rm CH3}$ 20,89 a $\delta_{\rm CH3}$ 21,65. O espectro de massas (Figura II.78, pág. 162) de alta resolução ionização *elétron spray* (IES) utilizando detecção de íons positivos (solução MeOH/ácido fórmico 0,1%), 30 eV, apresenta o pico do íon molecular em *m/z* 1246,5522 (M+H) e *m/z* 1204,5278 atribuído a saída de grupo acetil (CH₂CO), esses picos confirma que ocorreu acetilação no nitrogênio. Veja o Esquema II.6, pág. 163, da proposta de fragmentação.

As análises dos espectros de HMQC (Figuras II.72, II.73 e II.74, págs. 157 a 159) e HMBC (II.75, II.76 e II.77, págs. 159 a 161) permitiram a atribuição dos deslocamentos químicos dos hidrogênios e aos seus respectivos carbonos (Tabela II.4, pág. 148), confirmando assim a formação do produto **11a** *epi*-solamargina peracetilada.

Tabela II.4. Dados de RMN ¹H (500 MHz) e ¹³C (125 MHz) em CDCl₃ da substância **11a** (*epi*-Solamargina peracetilada) comparados com dados da literatura da solamargina (RIPPERGER, 1995)

	11a (<i>epi-</i> Solamargina peracetilada)				Solamargina (Piridina-d ₅)	
	HMQC		HMBC		HMQC	
	δ	δ _H	$^{2}J_{\rm CH}$	$^{3}J_{\rm CH}$	δ	δ _н
С	Ŭ				Ŭ	**
5	140,37	-		3H-19	140,82	-
10	36,91	-	3H-19	H-1b; H-6	37,16	-
13	42,93	-	3H-18	H-8; H-17; H-11	40,82	-
22	99,73	-			98,54	-
СН						
3	79,31	3,60		H-1'	77,99	3,89 (m)
6	122,17	5,36 (m)			121,90	5,33 (sl)
8	31,63	1,56			31,73	1,58
9	50,27	0,95	H-11b	H-1b; 3H-19	50,26	0,89 (m)
14	54,99	0,98		3H-18	56,51	1,09 (m)
16	75,91	5,06			81,13	4,82
17	62,14	1,53		H-12a; 3H-18; 3H-21	63,03	2,02
20	40.01	2.10		, ,	41.99	2.14
25	29.13	2.02	3H-27	H-23a: H-24b: 3H-27	31.73	1.58
CH ₂	,	_,•=			,	-,00
1	37,31	a)1,85; b)1.08		3H-19	37,54	a)1,75; b)1,02
2	29,75	a)1,93; b)1,58	H-1a		30,19	a)2,08; b)1,85
4	38,44	a)2,40; b)2,25			3,00	a)2,81 (dd, 11,6; 3,1), b)2,73 (t, 11,6)
7	31.84	1.94	H-6		32.26	1.85
11	21.02	a)1.55-1.45	-		21.10	1.42
12	40.01	a)2.08: b)1.25		3H-18	39.69	a)1.68: b)1.09
15	31.64	a) $2,20$; b) $1,70$			32.59	a)2.08: b)1.48
23	35.25	a)2.36; b)1.04			33.97	a)1.92; b)1.78
24	30.09	a) 2.28 ; b) 1.68		3H-27	30.02	1.65
26	45.54	3.20			47.10	a)3.04 (m); b) 2.89 (t. 11.5)
CH ₃		- , -			.,	
18	12.77	0.87 (s)		H-14: H-17	16.37	0.85 (s)
19	19,43	1.01 (s)		,	19,43	1,06 (s)
21	21,11	1,26 (d, 6,9)			15,69	1,28 (d, 6,7)
27	18,49	0.92 (d. 6.6)		H-23b: H-24a	19.20	0.79 (d. 6.5)
acúcar	- , -				- , -	
1'	99,77	4,56 (d, 7,7)		H-3; H-3'	100,33	4,96
2'	76,52	3,56	Н-3'	H-1""; H-4"	77,85	4,22
3'	75,54	5.28 (t. 9.4)		H-1': H-5'	78.12	4.23
4'	77,89	3,73 (t, 9,4)	Н-3'	H-1''; 2H-6'	78,78	4,40
5'	72,53	3,59 (m)	H-4'; 2H-6'	H-1'; H-3'	76,94	3,66 (td, 9,2)
6'	62,14	a)4,44 (d, 12,3) b)4 28 (dd 12 3, 3 6)		H-4'	61,34	a)4,23 b)4 10 (dd 12 1: 3 2)
1"	99.73	4.79 (d. 1.5)	Н-2"	H-4'	102.95	5.87 (s)
2"	70.46	5.02 (m)	H-3"		72.55	4.69 (d. 1.4)
3,,	68.82	5.16 (dd.10.2: 3.1)	H-2": H-4"	H-1": H-5"	72.77	4.55 (dd, 9.2; 3.2)
4"	70.78	5.03 (t. 10.2)	H-3'': H-5''	3H-6''	73.94	4.34 (t. 9.2)
5''	68.14	3.85 (m)	H-4'': 3H-6''	211 0	70.46	4.93 (m)
6''	17.35	1.14 (d. 6.1)	H-5"	H-4''	18.52	1.64 (d. 6.1)
1,,,,	97.54	4.90 (d. 1.5)	H-2""	H-2': H-5'''	102.06	6.41 (s)
2""	70.24	5.00 (m)	H-3""	,	72.58	4.84 (d. 1.8)
3,,,	68.82	5.23 (dd. 10.1: 3.1)	H-2"": H-4""	H-1'''	72.87	4.64 (dd. 9.2: 3.2)
4,,,	71.52	5,05 (t. 10.1)	H-3""	3H-6'''	74.17	4,32 (t. 9.2)
5'''	66.67	4,36 (m)	H-4'''; 3H-6'''	Н-1''': Н-3'''	69.54	4,98 (m)
6'''	17,53	1,17 (d, 6,2)	Н-5""	H-4""	18,67	1,78 (d, 6,2)

Figura II.57. Espectro de IV da substância 11a (epi-Solamargina peracetilada)

Figura II.58. Espectro de RMN de ¹H (500 MHz, CDCl₃) da substância **11a** (*epi*-Solamargina peracetilada)

Figura II.59. Espectro de RMN de ¹H (500 MHz, CDCl₃) ampliação da região $\delta_{\rm H}$ 0,7-2,5 ppm da substância **11a** (*epi*-Solamargina peracetilada)

Figura II.60. Espectro de RMN de ¹H (500 MHz, CDCl₃) ampliação da região $\delta_{\rm H}$ 3,0-5,5 ppm da substância **11a** (*epi*-Solamargina peracetilada)