UFRRJ

INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

TESE

Atividades Biológicas e Identificação dos Constituintes Químicos Isolados das Espécies Vegetais: *Plumeria lancifolia* Müll. Arg. (Apocynaceae) e *Solanum crinitum* Lam. (Solanaceae) e Identificação da Acetanilida Exsudada por *Xenohyla truncata* (IZECKSOHN, 1998)

Marli Terezinha Frana Cornelius

2006

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

ATIVIDADES BIOLÓGICAS E IDENTIFICAÇÃO DOS CONSTITUINTES QUÍMICOS ISOLADOS DAS ESPÉCIES VEGETAIS: Plumeria lancifolia MÜLL. ARG. (APOCYNACEAE) E Solanum crinitum LAM. (SOLANACEAE) E IDENTIFICAÇÃO DA ACETANILIDA EXSUDADA POR Xenohyla truncata (IZECKSOHN, 1998)

MARLI TEREZINHA FRANA CORNELIUS

Sob a Orientação do Professor Dr. Mário Geraldo de Carvalho

e Co-orientação do Professor Dr. Raimundo Braz-Filho

> Tese submetida como requisito parcial para obtenção do grau de **Doutora em Ciências,** no Curso de Pós-Graduação em Química Orgânica, Área de Concentração em Química de Produtos Naturais.

Seropédica, RJ Novembro de 2006

```
543.089
C814a
            Cornelius, Marli Terezinha Frana, 1972-
Т
               Atividade biológicas e identificação dos
            constituintes químicos isolados das espécies
            vegetais: Plumeria lancifolia Müll. Arg.
            (Apocynaceae) e Solanum crinitum Lam.
            (Solanaceae) e identificação da acetanilida
            exsudada por Xenohyla truncata (Izecksohn,
            1998) / Marli Terezinha Frana Cornelius. -
            2006.
               285 f. : il.
               Orientador: Mário Geraldo de Carvalho.
               Tese (doutorado) - Universidade Federal
            Rural do Rio de Janeiro, Instituto de
            Ciências Exatas.
               Inclui bibliografia.
               1. Análise cromatográfica - Teses. 2.
            Química analítica - Teses. 3. Produtos
naturais - Análise - Teses. 4. Acetanilida
            - Teses. I. Carvalho, Mário Geraldo de,
            1952-. II. Universidade Federal Rural do
            Rio de Janeiro. Instituto de Ciências
            Exatas. III. Título.
```

 Bibliotecário:
 Data:
 /_/____

UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO INSTITUTO DE CIÊNCIAS EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM QUÍMICA ORGÂNICA

MARLI TEREZINHA FRANA CORNELIUS

Tese submetida como requisito parcial para a obtenção do grau de **Doutora em** <u>Ciências</u> no Curso de Pós-Graduação em Química Orgânica, área de Concentração em Química de Produtos Naturais.

TESE APROVADA EM -----/-----

Prof. Dr. Mário Geraldo de Carvalho (DEQUIM-ICE-UFRuralRJ) (Orientador e Presidente)

Prof. Dr. Raimundo Braz-Filho. (LCQUI-CCT-UENF) (Co-orientador)

Profa. Dra. Leda Mathias (LCQUI-CCT-UENF)

Profa. Lavínia de Carvalho Brito (LARAMG-UERJ)

Profa. Dra. Márcia C. Campos de Oliveira (DEQUIM-ICE-UFRuralRJ)

Prof. Victor Marcos Rumjanek (DEQUIM-ICE-UFRuralRJ)

Profa. Áurea Echevarria A. N. Lima (DEQUIM-ICE-UFRuralRJ) (Suplente)

Prof. Dr. Ivo José Curcino Vieira (LCQUI-CCT-UENF) (Suplente)

Dedico esta tese ao meu extraordinário esposo Rui Airton Cornelius pelo amor, companheirismo, compreensão, dedicação, paciência e pelo incentivo necessário para enfrentar este desafio.

> A meus pais Lucia Benetti Frana e Santos Frana, pelo apoio, incentivo e fé transmitidos em todos os momentos da minha vida.

À minha sogra Edila T. Cornelius e meu sogro Balduino Rodolfo Cornelius, que muito contribuíram com ajuda, dedicação, e incentivo para que este objetivo fosse concretizado.

AGRADECIMENTOS

-A Deus por ter me dado esta oportunidade na vida.

-Ao Professor Dr. Mário Geraldo de Carvalho, pelos ensinamentos, compreensão, amizade e orientação neste trabalho, meu sincero respeito, reconhecimento e gratidão e à sua esposa Valdete S. de Carvalho pelo apoio.

-Ao Professor Dr. Raimundo Braz-Filho pelos ensinamentos, ajuda, conselhos e pelo exemplo de integridade e sabedoria e à sua esposa Maronci pelo acolhimento.

-Aos Professores Dra. Dalva Trevisan Ferreira e Dr. César Cornélio Andrei pela amizade e incentivo na iniciação científica e na pós-graduação em produtos naturais.

-À UFRuralRJ, pela oportunidade e acolhimento.

-Aos Professores do curso de pós-graduação em Química Orgânica (ICE-UFRuralRJ) Dra. Aurea Echevarria A. N. Lima, Dra. Rosane N. Castro, Dr. Carlos Maurício R. de Santanna, Dr. João B. N. da Costa, Dra. Márcia C. C. de Oliveira, Dr. Marco Edilson F. Lima, Dr. Aurélio B. B. Ferreira, Dr. Dari C. Sobrinho, Dr. Francisco de Assis da Silva, Dra. Clarissa O. da Silva, Dra. Sonia R. de Souza, Dr.Victor M. Rumjanek e Dr. José C. N. Ferreira.

-Ao Professor Dr. Ronald Bastos Freire (LATA-IB-UFRuralRJ), pelos testes de atividade antioxidante, teste de efeito citotóxico em células peritoneais de camundongos albinos (SW) e teste inibição metabólica em promastigotas de *Leishmania (Viannia) braziliensis*, juntamente com alunos de iniciação científica Kelly Z. Alves, Fernando M. Loureiro, Felipe B. Vianna e Kelli C. Almeida, Viviam de Assunção Nogueira, mestranda do curso de Pós-graduação de Ciências Veterinárias – Sanidade Animal Renata de Oliveira Tavares e mestranda do curso de Pós-graduação de Ciências Veterinárias – Parasitologia Deise da Silva Jacques.

-À Professora Dra. Solange Viana Paschoal Blanco Brandolini (IB-UFRuralRJ), pelos testes de avaliação moluscicida, juntamente com as alunas de iniciação científica Luciana da Silva Paschoal e Kelly Z. Alves.

-À Dra. Alceni Augusta Werle e Jorge José da Silva da Universidade Federal de Ouro Preto pela coleta e providências para classificação do material de *Plumeria lancifolia* Müll. Arg.

-Ao Dr. Germán Matiz (Universidad de Cartagena – Colômbia) pelos testes de atividade antiinflamatória.

-Ao Professor Dr. Marcos N. Eberlin e ao doutorando Mario Benassi Neto (IQ-Universidade Estadual de Campinas), pelos espectros de EMAR.

-Ao pessoal do laboratório Plataforma de Métodos Analíticos de Farmanguinhos/FIOCRUZ: Dra. Herika Martinz Carvalho, Patrícia Barreto Gomes Mathias da Silva, operador Pedro Pablo Perez Neto e ao responsável Leonardo César Coutada pela obtenção dos espectros de RMN a 400 e 500 MHz.

-Ao Dr. Daniel Esdras de Andrade Uchoa e Prof. Dr. Edilberto Rocha Silveira CENAUREMN, Programa de Pós-graduação em Química Orgânica - Departamento de Química Orgânica e Inorgânica - Centro de Ciências - Universidade Federal do Ceará, Fortaleza, Ceará, pela obtenção dos espectros de RMN a 500 MHz.

-Á Universidade Estadual do Norte Fluminense pela obtenção dos espectros de RMN a 400 MHz e massas.

-A todos os técnicos: Eli B. Siqueira, Carlos S. de Oliveira, Aurea de Almeida Tatagiba (in memóriam), Fábio O. Besteti, Frances R. dos Santos, Maurício L. Matos, Aldir P. de Jesus e André L. dos S. Rocha; administrativos: Renato, Osmar, Conceição M. Augusta, Rui S. Duarte, Pedro Gonçalves, Neli M. B. Santos do ICE-UFRuralRJ pelo auxílio prestado.

-As alunas de iniciação científica que me acompanharam durante a realização deste trabalho Kelly Z. Alves, Giselle C. da Silva e Ana Paula N. Siston.

-Aos colegas de laboratório, cujo incentivo e colaborações me ajudaram bastante, Tania M. S. da Silva, Cássia C. F. Alves, Juliana F. S. Daniel, Patrícia M. da Costa, Maritza A. R. Cardoso, Ildomar A. do Nascimento, Luciano R. Suzart, Luiz R. M. Albuquerque, Mário Sergio da Rocha Gomes, Lorena Caliman Cavatti, José Geraldo R. Junior, Alessandra D. Santana, André Hilário F. Pereira e Letícia Quinello.

-Em especial às amigas Cássia C. F. Alves, Juliana F. S. Daniel e Tania M. S. da Silva pelo apoio e conselhos nos momentos mais difíceis.

-Aos colegas da pós-graduação Myrtes, Cláudio, Andressa, Aline, Ricardo, Janaina, Ari, Ildomar, Tania, Cássia, Juliana, Patrícia, Maritza, Luciano, Luiz, Mário Sergio, Rute, Cristian, Regina, Kênia, Andréa Rose, Tatiana, Graziella, Welisson, Raquel, Bauer, Cristina, Viviane, Cleonice, Náuvia e Heloisa.

-Aos amigos do Alojamento da Pós-graduação da UFRuralRJ: Mariela R. Camargo, Elisangela S. de Araújo, Fabiana C. Dias, Adailde C. Santos, Kênia Pissinato, Carol, André, Silvana Duarte, Antonieta, Nilza N. Felizardo, Aimé Obatee, Ariane Castricini, Ana Luiza Carvalho, Mika E. M. Suzuki, Denise R. Melo, Eloísa H. M. Monteiro, Rosane, Tânia, Veridiana B. Silva, Ana Paula C. Magalhães, Eliane S. Morgado, Lídia M. S. de Oliveira, Erica C. Barbosa, Luciana, Henrique, Luciana Duque, Nathali G. Costa, Fabiana V. Massad, Fernanda N. de Godoi, Daniele F. Rosin, Maritza A. R. Cardoso, Kátia M. da Costa, Daniela Dias, Luciana H. T. de Freitas, Raquel O. Ferreira, Ana Cristina B. Cardoso, Amanda Charbam, Sandra B. dos Santos, Renata Scarlato, Raquel S. Gomes, Carina, Sandra Borges da Silva, Valéria C. Onofrio, Kátia Y. F. Kawase, Andréa R. da Silva, Tatiana, Nídia A. de Barros, José Dias, Ednaldo.

-Em especial às companheiras e amigas do Quarto 05: Luciana, Luciana Duque, Nathali G. Costa, Fabiana V. Massad, Fernanda N. de Godoi, Daniele F. Rosin e Maritza A. R. Cardoso.

-A todos que, de algum modo, me ajudaram na realização deste trabalho.

-Aos meus pais Lucia Benetti Frana e Santos Frana pelo incentivo, compreensão e a fé transmitida.

-Aos meus sogros Edila T. Cornelius e Balduino R. Cornelius pelos doces, salgados, carinho, paciência e abrigo.

- A todos os meus familiares, por acreditarem em mim.

-Aos meus sobrinhos Giovane e Arthur.

-Às amigas do coração Cinara M. Mamprim, Silvia M. Hizuka, Luciana Duque, Fabiana V. Massad e Nathali G. Costa que sempre me deram força e apoio nos trabalhos.

-Desde já, à banca examinadora, pelas sugestões e correções sugeridas a este trabalho.

- A CAPES, CNPq e FAPERJ pelos auxílios e bolsas concedidas.

- E por fim agradeço especialmente ao meu esposo Rui Airton Cornelius pela colaboração, paciência, apoio e acompanhamento dos meus trabalhos.

Muito Obrigada

"O mundo está nas mãos daqueles que têm coragem de sonhar. e correr o risco de viver seus sonhos. Cada qual com seu talento". (Paulo Coelho)

Meu lema: "O trabalho, a houra e a houestidade".

RESUMO

CORNELIUS, Marli Terezinha Frana. Atividades biológicas e identificação dos constituintes químicos isolados das espécies vegetais: *Plumeria lancifolia* Müll. Arg. (Apocynaceae) e *Solanum crinitum* Lam. (Solanaceae) e identificação da acetanilida exsudada por *Xenohyla truncata* (IZECKSOHN, 1998), 2006. 285f. Tese (Doutorado em Química Orgânica, Química de Produtos Naturais). Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2006.

As análises das frações obtidas do processamento cromatográfico dos extratos das espécies vegetais Plumeria lancifolia Müll. Arg. (Apocynaceae) e Solanum crinitum Lam. (Solanaceae) conduziu ao isolamento e a identificação de constituintes de diferentes classes de metabólitos especiais. Dos galhos e folhas de Plumeria lancifolia Müll. Arg. foram obtidos os triterpenos: 3-O-acil-β-amirina (1), β-amirina (1a), ácido ursólico (3), lupeol (4), 3-O-acillupeol (5) e o 3-O-acil- β -amirenonol (7); o esteróide espinasterol (2) e mistura de ésteres alifáticos (6, 8 e 9). Dos frutos verdes de Solanum crinitum Lam. foram isolados três alcalóides esteroidais glicosilados: solamargina (10), epi-solamargina (11) e a solasonina (12). Do extrato dos tricomas dos frutos verdes de Solanum crinitum Lam. isolaram-se os isômeros *cis*- e *trans*-cumarato de etila (13 e 14); o flavonóide canferol (15); ácido benzóico (16) e os isômeros cis e trans-p-ácido cumárico (17 e 18); a isoflavona biochanina A em mistura com etil-1 β -O-glicopiranosil (19) e a isoflavona triglicosilada, biochanina A 7-O- β -Dapiofuranosil- $(1\rightarrow 5)$ - β -D-apiofuranosil- $(1\rightarrow 6)$ - β -D-glicopiranosídio (20). Foram usadas reações para preparação dos derivados: ácido ursônico (3a), ursolato de metila (3b), 3-Oacetil-ursolato de metila (3c), 3-oxo-ursolato de metila (3d), 3,7,4'-trimetil-canferol (15a), 3,5,7,4'-tetrametil-canferol (15b), 3,7,4'-trimetoxi-5-acetoxi-flavonol (15c), além dos derivados peracetilados da epi-solamargina (11a) e da solasonina (12a), novos na literatura. Do exsudado cutâneo do anfíbio anuro Xenohyla truncata (IZECKSOHN, 1998), sob estresse, foi identificada apenas a acetanilida (21). As estruturas foram identificadas através da análise de espectros IV, massas e RMN ¹H e ¹³C, incluindo técnicas especiais 1D e 2D das substâncias naturais e derivados. Este estudo revelou a presença de um esteróide (espinasterol) e dois triterpenos (3-O-acil-\beta-amirina e 3-O-acil-β-amirenonol) novos no gênero *Plumeria*; a isoflavona triglicosilada (biochanina A 7-O- β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil- $(1\rightarrow 6)$ - β -D-glicopiranosídio) isolada pela primeira vez no gênero Solanum e a epi-solamargina e mais dois derivados a epi-solamargina peracetilada e a solasonina peracetilada inéditos na literatura. Realizaram-se os testes biológicos de atividade: a) moluscicida, com os extratos de Plumeria lancifolia Müll. Arg. e Solanum crinitum Lam. e das substâncias isoladas β -amirina (1a) e ácido ursólico (3); b) antioxidante, com os extratos de *Plumeria lancifolia* Müll. Arg. e *Solanum crinitum* Lam.; c) toxidez do extrato metanólico das folhas de Plumeria lancifolia Müll. Arg. em células peritoneais de camundongos albinos; d) ensaio de edema auricular com o ácido ursólico (3), ácido ursônico (3a), ursolato de metila (3b), 3-O-acetil-ursolato de metila (3c) e 3-oxo-ursolato de metila (3d), epi-solamargina (11), epi-solamargina peracetilada (11a), canferol (15), 3,7,4'-trimetil-canferol (15a), 3,5,7,4'tetrametil-canferol (15b) e 3.7.4'-trimetil-5-acetoxi-flavonol (15c); e) inibicão metabólica em promastigotas de Leishmania (Viannia) braziliensis com extrato hexânico das partes aéreas de Solanum crinitum Lam.

Palavras-chave: Plumeria lancifolia Müll. Arg., Solanum crinitum Lam., Xenohyla truncata (IZECKSOHN, 1998).

ABSTRACT

CORNELIUS, Marli Terezinha Frana. Biological activities and identification of the chemical constituents isolated from plant species: *Plumeria lancifolia* Müll. Arg. (Apocynaceae) and *Solanum crinitum* Lam. (Solanaceae) and acetanilide identified in the exhalate from *Xenohyla truncata* (IZECKSOHN, 1998)/ 2006. 285f. Thesis (Doctorate in Organic Chemistry, Chemistry of Natural Products). Instituto de Ciências Exatas, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2006.

The analysis of the fractions from the chromatographic fractionation of the extracts from plant species Plumeria lancifolia Müll. Arg. (Apocynaceae) and Solanum crinitum Lam. (Solanaceae) led to the isolation of some chemical constituents belonging to different classes of special metabolites. From the branches and leaves of Plumeria lancifolia Müll. Arg. were obtained the triterpenes: 3-O-acyl-β-amyrin (1), β-amyrin (1a), ursolic acid (3), lupeol (4), 3-O-acyl-lupeol (5) e o 3-O-acyl- β -amirenonol (7), spinasterol (2) and a mixture of aliphatic esters (6, 8 e 9). From the unripe fruits of *Solanum crinitum* Lam. were isolated three steroids alkaloids glycosides: solamargine (10), epi-solamargine (11) and solasonine (12). The extract from tricomes of unripe fruits of S. crinitum Lam. were isolated cis- and trans-ethylcoumarate (13 e 14); the flavonoids kaempherol (15), benzoic acid (16), cis- and trans-pcoumaric acid (17 e 18); the isoflavone biochanin A in mixture ethyl- 1β -O-glucopyranoside (19) and the isoflavone, 7-O- β -D-apiofuranosyl-(1 \rightarrow 5)-O- β -D-(1 \rightarrow 5)-apiofuranosyl-(1 \rightarrow 6)-O- β -D-glucopyranosyl-biochanin A (20). Reactions were used to obtain: ursornic acid (3a), methyl ursolate (3b), methyl 3-O-acetyl-ursolate (3c), methyl 3-oxo-ursolate (3d), 3,7,4'trimethylkaempherol (15a), 3,5,7,4'-tetramethylkaempherol (15b) and 3,7,4'-trimetoxi-5acetoxyflavone (15c) besides, the new derivatives, peracetyl-epi-solamargine (11a) and peracetyl-solasonine (12a). From the cutaneous exhalate of anura amphibian Xenohyla truncata (IZECKSOHN, 1998), under stress, only N-phenyl-acetamide (21) was identified. The structures were determined by IR, MS and ¹H and ¹³C NMR spectral analysis, including 2D NMR experiments of the natural substances and of the derivatives. Besides the identification of the steroid spinasterol, and the triterpenes, 3-O-acyl-β-amyrin and 3-O-acyl- β -amirenonol, were identified for the first time in the genera *Plumeria*; the isoflavone biochanin A triglycoside has not identified before in Solanum genera. Steroidal alkaloids episolamargine and acetyl derivatives epi-solamargine and solasonine, were not found in the literature. Biological tests were carried out: a) molluscicide activities with extracts of *Plumeria lancifolia* Müll. Arg. and *Solanum crinitum* Lam. and the pure substances, β-amyrin (1a) and ursolic acid (3); b) antioxidant activities with extracts of *Plumeria lancifolia* Müll. Arg. and Solanum crinitum Lam.; c) toxicity test with metanolic extract from the leaves of Plumeria lancifolia Müll. Arg. on peritoneum cell of albine mice; d) earedema test with ursolic acid (3), ursonic acid (3a), methyl ursolate (3b), methyl 3-O-acyl-ursolate (3c), methyl 3-oxo-ursolate (3d), epi-solamargine (11), epi-peracetyl-solamargine (11a), kaempherol (15), 3,7,4'-trimethylkaempherol (15a), 3,5,7,4'-tetramethylkaempherol (15b) and 3,7,4'-trimetoxi-5-acetoxyflavone (15c); e) the metabolic inhibition on promastigotas of *Leishmania (Viannia)* braziliensis with hexanic extract of aerial part of Solanum crinitum Lam.

Key words: *Plumeria lancifolia* Müll. Arg., *Solanum crinitum* Lam., *Xenohyla truncata* (IZECKSOHN, 1998).

LISTA DE FIGURAS

Figura 1. Estruturas químicas	2
Figura I.1. Estruturas químicas de substâncias isoladas da família Apocynaceae	14
Figura I.2. Plumeria lancifolia Müller Arg	29
Figura I.3. Espectro de IV da substância 1 (3- <i>O</i> -acil de β-amirina)	39
Figura L4. Espectro de RMN de ¹ H (200 MHz CDCl ₂) da substância 1 (3- <i>O</i> -acil de β -	
amirina)	39
Figura L5 . Espectro de RMN de 13 C (50 MHz CDCl ₂) da substância 1 (3- <i>O</i> -acil de β-	
amirina)	40
Figura I 6 Espectro de RMN de ¹³ C DEPT (A=90° 50 MHz CDCl ₂) da substância 1	10
(3-O-acil de B-amirina)	40
Figure 17 Espectro de RMN de 13 C DEPT (A=135° 50 MHz CDCl ₂) da substância 1	40
(3 Ω acil de β amirina)	/1
Figure 18 Espectro de PMN HETCOR (^{13}C) 50 MHz ^{1}H 200 MHz CDCL) de	41
substâncie 1 (2 O acil de 8 amirine)	12
Substancia I (5-0-acii de p-aninina)	42 42
Figura 1.9. Espectro de l'V do produto 1a (p-amirina)	42
Figura 1.10. Espectro de RMN de H (200 MHz, CDCl ₃) do produto la (β -amirina)	43
Figura I.II. Espectro de RMN de ¹³ C (50 MHz, CDCl ₃) do produto Ia (β -amirina)	43
Figura 1.12. Espectro de IV da substância 2 (Espinasterol)	46
Figura 1.13. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substancia 2 (Espinasterol)	46
Figura 1.14. Espectro de RMN de 13 C (50 MHz, CDCl ₃) da substancia 2 (Espinasterol)	47
Figura I.15. Espectro de RMN de ¹³ C DEPT ($\mathbf{A}:\theta=90^{\circ}$; $\mathbf{B}:\theta=135^{\circ}$, 50 MHz, CDCl ₃) da	
substância 2 (Espinasterol)	48
Figura I.16. Espectro de RMN HETCOR (¹³ C - 50 MHz, ¹ H - 200 MHz, CDCl ₃) da	
substância 2 (Espinasterol)	49
Figura 1.17. Espectro de RMN HETCOR (¹³ C - 50 MHz, ¹ H - 200 MHz, CDCl ₃)	
ampliação da região 8 10-30x0,5-2,1 ppm da substância 2 (Espinasterol)	50
Figura I.18. Espectro de massas da substância 2 (Espinasterol)	51
Figura I.19. Espectro de IV da substância 3 (Acido ursólico)	55
Figura I.20. Espectro de RMN de ¹ H (200 MHz, Piridina- d_5) da substância 3 (Acido	
ursólico).	55
Figura 1.21. Espectro de RMN de 13 C (50 MHz, Piridina- d_5) da substância 3 (Acido	
ursólico)	56
Figura I.22. Espectro de RMN de ¹³ C DEPT ($\mathbf{A}:\theta=90^\circ$; $\mathbf{B}:\theta=135^\circ$, 50 MHz, Piridina-	
d_5) da substância 3 (Acido ursólico)	57
Figura I.23. Espectro de IV do derivado 3a (Acido ursônico)	58
Figura I.24. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) do derivado 3a (Acido	
ursônico)	58
Figura 1.25. Espectro de IV do derivado 3b (Ursolato de metila)	59
Figura I.26. Espectro de RMN de 'H (200 MHz, CDCl ₃) do derivado 3b (Ursolato de	
metila)	59
Figura 1.27. Espectro de IV do derivado 3c (3- <i>O</i> -acetil-ursolato de metila)	60
Figura I.28. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) do derivado 3c (3- <i>O</i> -acetil-	
ursolato de metila)	60
Figura 1.29. Espectro de IV do derivado 3d (3-oxo-ursolato de metila)	61

Figura I.30. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) do derivado 3d (3-oxo-	
ursolato de metila)	61
Figura I.31. Espectro de IV da substância 4 (Lupeol)	62
Figura I.32. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substância 4 (Lupeol)	62
Figura I.33. Espectro de IV de mistura de 3-O-acil-β-amirina (1) e 3-O-acil-lupeol (5)	63
Figura I.34. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) de mistura de 3- <i>O</i> -acil-β-	
amirina (1) e 3- <i>O</i> -acil-lupeol (5)	64
Figura I.35. Espectro de RMN de ¹³ C (50 MHz, CDCl ₃) de mistura 3- <i>O</i> -acil-β-amirina	
(1) e 3- <i>O</i> -acil-lupeol (5)	64
Figura I.36. Espectro de IV de 6 (Mistura de ésteres alifáticos)	65
Figura I.37. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) de 6 (Mistura de ésteres	
alifáticos)	66
Figura I.38. Cromatograma a gás de 6 (Mistura de ésteres alifáticos)	66
Figura I.39. Espectro de IV da substância 7 (3- <i>O</i> -acil de β-amirenonol)	69
Figura I.40. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) da substância 7 (3- <i>O</i> -acil de	
β-amirenonol)	69
Figura I.41. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) ampliação da região $\delta_{\rm H}$ 0,75-	
3,00 ppm da substância 7 (3-O-acil de β-amirenonol)	70
Figura I.42. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 7 (3- <i>O</i> -acil de	
β-amirenonol)	70
Figura I.43. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) ampliação da região $\delta_{\rm C}$ 10-65	
ppm da substância 7 (3-O-acil de β-amirenonol)	71
Figura I.44. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) da substância	
7 (3- O -acil de β -amirenonol)	71
Figura I.45. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) ampliação da	
região $\delta_{\rm C}$ 10-65 ppm da substância 7 (3- <i>O</i> -acil de β -amirenonol)	72
Figura I.46. Espectro de RMN HMQC (¹ H - 500 MHz, ¹³ C - 125 MHz, CDCl ₃) da	
substância 7 (3- O -acil de β -amirenonol)	72
Figura I.47. Espectro de RMN HMQC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃).	
Regiões ampliadas: A (δ 1,6-2,4x44-64 ppm), B (δ 1,7-2,9x25-41 ppm), C (δ 1,0-	
1,8x28-40 ppm) e D (δ 1,1-1,8x21-27 ppm) da substância 7 (3- <i>O</i> -acil de β-	
amirenonol)	73
Figura I.48. Espectro de RMN HMQC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃).	
Regiões ampliadas: E (δ 0,8-1,1x22-35 ppm) e F (δ 0,8-1,65x13-20 ppm) da	
substância 7 (3- O -acil de β -amirenonol)	74
Figura I.49. Espectro de RMN COSY (500 MHz, CDCl ₃) da substância 7 (3-O-acil de	
β-amirenonol)	74
Figura I.50. Espectro de RMN NOESY (500 MHz, CDCl ₃). Regiões ampliadas: A ($\delta_{\rm H}$	
2,7-5,8x0,7-2,3 ppm) e B ($\delta_{\rm H}$ 2,0-2,4x0,79-1,85 ppm) da substância 7 (3- <i>O</i> -acil de	
β-amirenonol)	75
Figura I.51. Espectro de RMN HMBC (500 MHz, CDCl ₃) da substância 7 (3- <i>O</i> -acil de	
β-amirenonol)	76
Figura I.52. Espectro de RMN HMBC (¹ H - 500 MHz, ¹³ C - 125 MHz, CDCl ₃).	
Região ampliada: A (δ 4,4-4,7x14-42 ppm) da substância 7 (3- <i>O</i> -acil de β -	
amirenonol)	76

Figura I.53. Espectro de RMN HMBC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃).	
Regiões ampliadas: B (δ 5,4-5,8x40-65 ppm), C (δ 5,4-5,7x20-40 ppm), D (δ 2,2-	
2,9x14-33 ppm) e E (δ 2,2-2,9x34-58 ppm) da substância 7 (3- <i>O</i> -acil de β -	
amirenonol)	77
Figura I.54. Espectro de RMN HMBC (¹ H - 500 MHz, ¹³ C - 125 MHz, CDCl ₃).	
Regiões ampliadas: F (δ 0,7-1,5x13-20 ppm), G (δ 1,1-1,4x25-63 ppm), H (δ 0,7-	
$1.8x42-64$ ppm) e I (δ 0.7-1.8x76-85 ppm) da substância 7 (3- <i>O</i> -acil de B-	
amirenonol)	78
Figura I.55. Espectro de IV da mistura de ésteres alifáticos (8 e 9)	79
Figura I.56. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da mistura de ésteres	
alifáticos (8 e 9)	80
Figura I.57. Espectro de RMN de ¹³ C (50 MHz, CDCl ₃) da mistura de ésteres alifáticos	
(8 e 9)	80
Figura I.58. Espectros de massas da mistura de ésteres alifáticos (8 e 9)	81
Figura II.1. Estruturas de espirosolanos	89
Figura II.2. Estruturas de solanidanos	90
Figura II.3. Estruturas de solanocapsinas	90
Figura II.4. Estruturas de piperidinas simples	90
Figura II.5. Estruturas de flavonóides isolados do gênero <i>Solanum</i>	92
Figura II.6. Solanum crinitum Lam	93
Figura II.7. Projeção de Newman de 10 (Solamargina) e 11 (<i>epi</i> -Solamargina)	.104
Figura II.8. Espectro de IV da substancia I0 (Solamargina)	.109
Figura II.9. Espectro de IV da substancia II (<i>epi</i> -Solamargina)	.109
Figura 11.10. Espectro de RIMIN de H (500 MHZ, Piridina- a_5) da substancia 10	110
(Solamaigina)	.110
Figura II.II. Espectro de Rivin de H (500 MHZ, Piridina- a_5) ampliação da região $o_{\rm H}$	110
5,5-5,5 ppin da substancia IU (Solainaigina)	.110
Figura 11.12. Espectro de Rivir de H (500 MHZ, Pindina- a_5) ampliação da região $o_{\rm H}$	111
Figure II 13 Espectro de PMN de ¹ H (500 MHz Diridina d_2) de substâncie 11 (ani	. 1 1 1
Solamargina)	111
Figure II 14 Espectro de RMN de ¹ H (500 MHz Piridina- d_z) ampliação da região δ_{yz}	
0.7-3.2 nnm da substância 11 (<i>ani</i> -Solamargina)	112
Figura II 15 Espectro de RMN de ¹ H (500 MHz Piridina- d_z) ampliação da região δ_{tr}	. 1 1 2
3 6-5 0 nnm da substância 11 (<i>eni</i> -Solamargina)	112
Figura II.16. Espectro de RMN COSY (500 MHz Piridina- d_5) da substância 10	. 1 1 2
(Solamargina)	113
Figura II.17. Espectro de RMN COSY (500 MHz. Piridina- d_5) da substância 10	
(Solamargina) Regiões ampliadas: A ($\delta_{\rm H}$ 0, 5-2, 2x0, 5-2, 2 ppm) e B ($\delta_{\rm H}$ 3, 8-	
5.5x1.4-2.2 ppm)	.113
Figura II.18. Espectro de RMN COSY (500 MHz, Piridina- <i>d</i> ₅) da substância 10	
(Solamargina). Regiões ampliadas: C ($\delta_{\rm H}$ 3,8-4,5x2,6-3,8 ppm), D ($\delta_{\rm H}$ 4,0-	
$5.1 \times 4.0-5.1 \text{ ppm}$) e E ($\delta_{\rm H}$ 5.8-6.8x4.1-4.9 ppm)	.114
Figura II.19. Espectro de RMN COSY (500 MHz, Piridina- d_5) da substância 11 (<i>epi</i> -	
Solamargina)	.115
Figura II.20. Espectro de RMN COSY (500 MHz, Piridina-d ₅) da substância 11 (epi-	
Solamargina). Regiões ampliadas: A ($\delta_{\rm H}$ 3,7-4,1x1,8-2,9 ppm), B ($\delta_{\rm H}$ 4,0-4,5x3,5-	
3,8 ppm), C (δ _H 4,0-5,0x4,0-5,0 ppm) e D (δ _H 5,8-6,5x4,6-5,0 ppm)	.116

Figura II.21. Espectro de RMN NOESY (500 MHz, Piridina- d_5) da substância 10	
(Solamargina)	.117
Figura II.22. Espectro de RMN NOESY (500 MHz, Piridina- d_5). Regiões ampliadas:	
A ($\delta_{\rm H}$ 4,0-5,2x4,0-5,2 ppm), B ($\delta_{\rm H}$ 5,8-6,9x4,0-5,2 ppm), C ($\delta_{\rm H}$ 4,0-5,1x3,5-4,0	
ppm) e D ($\delta_{\rm H}$ 4,9-5,4x1,4-3,0 ppm) da substância 10 (Solamargina)	.118
Figura II.23. Espectro de RMN NOESY (500 MHz, Piridina- <i>d</i> ₅) da substância 11 (<i>epi</i> -	
Solamargina)	.119
Figura II.24. Espectro de RMN NOESY (500 MHz, Piridina- d_5). Regiões ampliadas:	
A ($\delta_{\rm H}$ 3,5-5,0x3,5-5,0 ppm) e B ($\delta_{\rm H}$ 5,8-6,5x4,0-5,0 ppm) da substância 11 (<i>epi</i> -	100
Solamargina)	.120
Figura 11.25. Espectro de RMN de ^{-1}C (125 MHz, Piridina- d_5) da substancia 10	101
(Solamargina)	.121
Figura II.26. Espectro de RMN de $^{-1}$ C (125 MHz, Piridina- d_5) ampliação da região δ_C	101
59-80 ppm da substancia 10 (Solamargina)	.121
Figura II.27. Espectro de RMN de ${}^{\circ}$ C (125 MHz, Piridina- d_5) ampliação da região $\delta_{\rm C}$	100
30-42 ppm da substancia 10 (Solamargina)	.122
Figura II.28. Espectro de RMN de ${}^{\circ}C$ (125 MHz, Piridina- d_5) ampliação da região δ_C	100
16-22 ppm da substancia 10 (Solamargina)	.122
Figura II.29. Espectro de RMN de ¹⁵ C DEPT (θ =135°, 125 MHz, Piridina- d_5) da	100
substancia IU (Solamargina)	.123
Figura 11.30. Espectro de RMN de ¹⁵ C DEPT (θ =135°, 125 MHz, Piridina- d_5)	
ampliação da região $\delta_{\rm C}$ 30-42 ppm da substância 10 (Solamargina)	.123
Figura II.31. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, Piridina- d_5)	
ampliação da região $\delta_{\rm C}$ 16-22 ppm da substância 10 (Solamargina)	.124
Figura II.32. Espectro de RMN de ¹³ C (125 MHz, Piridina- d_5) da substância 11 (<i>epi</i> -	
Solamargina)	.124
Figura II.33. Espectro de RMN de ¹³ C (125 MHz, Piridina- d_5) ampliação da região δ_C	
15-22 ppm da substância 11 (<i>epi</i> -Solamargina)	.125
Figura II.34. Espectro de RMN de ¹³ C (125 MHz, Piridina- d_5) ampliação da região δ_C	
29-43 ppm da substância 11 (<i>epi</i> -Solamargina)	.125
Figura II.35. Espectro de RMN de ¹³ C (125 MHz, Piridina- d_5) ampliação da região δ_C	
68-79 ppm da substância 11 (<i>epi</i> -Solamargina)	.126
Figura II.36. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, Piridina- d_5) da	
substância 11 (<i>epi</i> -Solamargina)	.126
Figura II.37. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, Piridina- d_5)	
ampliação da região $\delta_{\rm C}$ 15-22 ppm da substância 11 (<i>epi</i> -Solamargina)	.127
Figura II.38. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, Piridina- d_5)	
ampliação da região δ_C 30-42 ppm da substância 11 (<i>epi</i> -Solamargina)	.127
Figura II.39. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, Piridina- d_5)	
ampliação da região $\delta_{\rm C}$ 69-79 ppm da substância 11 (<i>epi</i> -Solamargina)	.128
Figura II.40. Espectro de RMN HMQC (1 H - 500 MHz, 13 C - 125 MHz, Piridina- d_5) da	
substância 10 (Solamargina)	. 129
Figura II.41. Espectro de RMN HMQC (1 H - 500 MHz, 13 C - 125 MHz, Piridina- d_5) da	
substância 10 (Solamargina). Regiões ampliadas: A (δ 0,8-1,8x15-22 ppm), B (δ	
0,9-1,4x28-43 ppm), C (δ 1,3-2,2x29-43 ppm) e D (δ 2,6-2,9x37-51 ppm)	.130
Figura II.42. Espectro de RMN HMQC (¹ H - 500 MHz, ¹³ C - 125 MHz, Piridina- d_5) da	
substância 10 (Solamargina). Regiões ampliadas: Ε (δ 0,8-1,9x47-66 ppm), F (δ	
4,8-5,1x68-103 ppm), G (δ 4,0-4,3x60-80 ppm) e H (δ 4,9-6,5x99-124 ppm)	.131

Figura II.43. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância **10** (Solamargina). Região ampliada: **Ι** (δ 3,8-5,0x68-81 ppm)......132 Figura II.44. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da Figura II.45. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 11 (epi-Solamargina). Regiões ampliadas: A (δ 0,7-1,9x14-23 ppm), B (δ 1,4-2,2x29-42 ppm), C (δ 2,6-3,2x36-50 ppm) e D (δ 3,6-5,0x67-83 ppm)134 Figura II.46. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 10 (Solamargina). Regiões ampliadas: A (δ 0,6-1,3x14-22 ppm) e B (δ **Figura II.48.** Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 10 (Solamargina). Regiões ampliadas: C (δ 0,8-1,2x28-44 ppm), D (δ 4,3-5,3x15-42 ppm), **E** (δ 0,8-1,7x45-53 ppm) e **F** (δ 1,4-2,2x28-45 ppm)136 Figura II.49. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 10 (Solamargina). Regiões ampliadas: G (δ 0,8-2,2x54-66 ppm), H (δ 1.6-1.9x66-77 ppm), **I** (δ 1.0-2.9x76-102 ppm) e **J** (δ 0,9-3,0x119-144 ppm)......137 Figura II.50. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 10 (Solamargina). Regiões ampliadas: L (δ 4,3-5,4x16-44 ppm), M (δ Figura II.51. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 10 (Solamargina). Região ampliada: (8 5,8-6,9x68-81 ppm)......139 Figura II.52. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 11 (epi-Solamargina). Regiões ampliadas: A (δ 0,8-1,8x28-44 ppm), B Figura II.54. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, Piridina- d_5) da substância 11 (epi-Solamargina). Regiões ampliadas: E (δ 4,2-5,0x67-80 ppm), F Figura II.55. Espectro de massas de alta resolução da substância 10 (Solamargina), Figura II.56. Espectro de massas de alta resolução da substância 11 (epi-Solamargina), obtido com ionização elétron spray (IES) e detecção de íons positivos145 Figura II.57. Espectro de IV da substância 11a (epi-Solamargina peracetilada)......149 Figura II.58. Espectro de RMN de ¹H (500 MHz, CDCl₃) da substância 11a (*epi*-**Figura II.59.** Espectro de RMN de ¹H (500 MHz, CDCl₃) ampliação da região $\delta_{\rm H}$ 0.7-**Figura II.60.** Espectro de RMN de ¹H (500 MHz, CDCl₃) ampliação da região $\delta_{\rm H}$ 3,0-Figura II.61. Espectro de RMN COSY (500 MHz,CDCl₃) da substância 11a (epi-Figura II.62. Espectro de RMN COSY (500 MHz, CDCl₃) da substância 11a (epi-Solamargina peracetilada). Regiões ampliadas: A ($\delta_{\rm H}$ 0,5-2,6x0,5-2,6 ppm) e **B** Figura II.63. Espectro de RMN NOESY (500 MHz, CDCl₃) da substância 11a (epi-

Figura II.64. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 11a (<i>epi</i> -	
Solamargina peracetilada)	153
Figura II.65. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) ampliação da região $\delta_{\rm C}$ 10-	
46 ppm da substância 11a (<i>epi</i> -Solamargina peracetilada)	153
Figura II.66. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) ampliação da região δ_C 66-	
73 ppm da substância 11a (<i>epi</i> -Solamargina peracetilada)	154
Figura II.67. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) ampliação da região δ_C 75-	
101 ppm da substância 11a (<i>epi</i> -Solamargina peracetilada)	154
Figura II.68. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) ampliação da região $\delta_{\rm C}$	
169,6-171,2 ppm da substância 11a (<i>epi</i> -Solamargina peracetilada)	155
Figura II.69. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) da	
substância 11a (<i>epi</i> -Solamargina peracetilada)	155
Figura II.70. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) ampliação	
da região $\delta_{\rm C}$ 14-45 ppm da substância 11a (<i>epi</i> -Solamargina peracetilada)	156
Figura II.71. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) ampliação	
da região δ_c 64-75 ppm da substância 11a (<i>eni</i> -Solamargina peracetilada)	156
Figura II.72. Espectro de RMN HMOC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃) da	100
substância 11a (<i>eni</i> -Solamargina peracetilada)	157
Figura II.73. Espectro de RMN HMOC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃) da	
substância 11a (<i>epi</i> -Solamargina peracetilada). Regiões ampliadas: A (δ 0.8-	
1.6x11-23 ppm), B (δ 1.0-1.8x28-41 ppm), C (δ 1.8-2.5x28-41 ppm) e D (δ 0.9-	
1.6x48-63 ppm)	158
Figura II.74. Espectro de RMN HMOC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃) da	
substância 11a (<i>eni</i> -Solamargina peracetilada) Regiões ampliadas: \mathbf{E} (δ 3 5-5 4	
$x60-80 \text{ ppm}) \in \mathbf{F} (\delta 4.5-5.4 \times 96-125 \text{ ppm})$	159
Figura II.75. Espectro de RMN HMBC (1 H - 500 MHz 13 C - 125 MHz CDCl ₃) da	109
substância 11a (<i>epi</i> -Solamargina peracetilada)	159
Figura II.76. Espectro de RMN HMBC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃) da	
substância 11a (<i>epi</i> -Solamargina peracetilada). Regiões ampliadas: A (δ 0.7-	
1 6x35-57 ppm) B (δ 0 6-2 2x58-77 ppm) C (δ 3 8-5 5x15-40 ppm) e D (δ 3 5-	
3.9x60-77 ppm)	160
Figura II.77. Espectro de RMN HMBC (1 H - 500 MHz, 13 C - 125 MHz, CDCl ₃) da	
substância 11a (<i>epi</i> -Solamargina peracetilada). Regiões ampliadas: E (δ 4.4-	
$5 4x65-74 \text{ ppm}$) F ($\delta 4 4-5 4x74-82 \text{ ppm}$) e G ($\delta 3 4-5 4x94-104 \text{ ppm}$)	161
Figura II.78. Espectro de massas de alta resolução da substância 11a (<i>epi</i> -Solamargina	101
peracetilada), obtido com ionização <i>elétron sprav</i> (IES) e detecção de ions	
positivos	162
Figura II.79. Espectro de RMN de ¹ H (200 MHz, Piridina- d_5) da substância 12	
(Solasonina)	167
Figura II.80. Espectro de RMN A) ¹³ C (50 MHz, Piridina- d_5), B) DEPT (θ =135°) e C)	
DEPT (θ =90°) da substância 12 (Solasonina)	167
Figura II.81. Espectro de RMN HETCOR (13 C - 50 MHz, 1 H - 200 MHz, Piridina- d_5)	
da substância 12 (Solasonina)	168
Figura II.82. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada)	169
Figura II.83. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada). Ampliação da região δ_H 0,7-2,5 ppm	169
Figura II.84. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada). Ampliação da região δ_H 3,0-5,6 ppm	170

Figura II.85. Espectro de RMN COSY (500 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada)	170
Figura II.86. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada)	171
Figura II.87. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada). Ampliação da região $\delta_{\rm C}$ 10-46 ppm	171
Figura II.88. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada). Ampliação da região $\delta_{\rm C}$ 47-80 ppm	172
Figura II.89. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da substância 12a	
(Solasonina peracetilada). Ampliação da região $\delta_{\rm C}$ 100-172 ppm	172
Figura II.90. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) da	
substância 12a (Solasonina peracetilada)	173
Figura II.91. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) da	
substância 12a (Solasonina peracetilada). Ampliacão da região δ_c 11-41 ppm	173
Figura II.92. Espectro de RMN HMOC (1 H - 500 MHz 13 C - 125 MHz CDCl ₂) da	. 1 / 5
substância 12a (Solasonina peracetilada)	174
Figura II.93. Espectro de RMN HMOC (1 H - 500 MHz 13 C - 125 MHz CDCl ₂) da	, .
substância 12a (Solasonina peracetilada). Ampliação da região 8.0.7-2.5x10-60	
nnm	175
Figura II.94. Espectro de RMN HMOC (¹ H - 500 MHz 13 C - 125 MHz CDCl ₃) da	. 1 / 0
substância 12a (Solasonina peracetilada) Ampliação da região 8 3 4-5 6x50-125	
nnm	175
Figura II.95. Espectro de RMN HMBC (1 H - 400 MHz 13 C - 100 MHz CDCl ₃) da	. 1 / 0
substância 12a (Solasonina peracetilada)	176
Figura II.96. Espectro de RMN de ¹ H (500 MHz, CDCl ₃) da mistura dos isômeros 13	
(<i>cis</i> -cumarato de etila) e 14 (<i>trans</i> -cumarato de etila)	179
Figura II.97. Espectro de RMN de ¹ H (500 MHz CDCl ₂) ampliação da região $\delta_{\rm H}$ 5 75-	
7 75 ppm da mistura dos isômeros 13 (<i>cis</i> -cumarato de etila) e 14 (<i>trans</i> -cumarato	
de etila)	179
Figura II.98. Espectro de RMN COSY (500 MHz, CDCl ₃) da mistura dos isômeros 13	
(<i>cis</i> -cumarato de etila) e 14 (<i>trans</i> -cumarato de etila).	180
Figura II.99. Espectro de RMN de ¹³ C (125 MHz, CDCl ₃) da mistura dos isômeros 13	
(<i>cis</i> -cumarato de etila) e 14 (<i>trans</i> -cumarato de etila)	181
Figura II.100. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, CDCl ₃) da mistura	
dos isômeros 13 (<i>cis</i> -cumarato de etila) e 14 (<i>trans</i> -cumarato de etila).	181
Figura II.101. Espectro de IV da substância 15 (Canferol)	187
Figura II.102. Espectro de RMN de ¹ H (200 MHz, DMSO- d_6) da substância 15	
(Canferol)	187
Figura II.103. Espectro de RMN de ¹³ C (50 MHz, DMSO- d_6) da substância 15	
(Canferol)	188
Figura II.104. Espectro de IV da substância 15a (3,7,4'-trimetil-canferol)	189
Figura II.105. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substância 15a (3,7,4'-	
trimetil-canferol)	189
Figura II.106. Espectro de RMN NOE (200 MHz, CDCl ₃) da substância 15a (3,7,4'-	
trimetil-canferol)	. 190
Figura II.107. Espectro de RMN de ¹³ C (50 MHz, CDCl ₃) da substância 15a (3.7.4'-	
trimetil-canferol)	. 190
Figura II.108. Espectro de IV da substância 15b (3,5,7,4'-tetrametil-canferol)	.191
Figura II.109. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substância 15b (3,5,7,4'-	
tetrametil-canferol)	. 191

Figura II.110. Espectro de RMN NOE (200 MHz, CDCl ₃) da substância 15b (3,5,7,4'-	
tetrametil-canferol)	.192
Figura II.111. Espectro de RMN de 13 C (50 MHz, CDCl ₃) da substância 15b (3,5,7,4'-	
tetrametil-canferol)	.193
Figura II.112. Espectro de RMN COLOC (13 C - 50 MHz, 1 H - 200 MHz, CDCl ₃) da	
substância 15b (3,5,7,4'-tetrametil-canferol)	.193
Figura II.113. Espectro de IV da substância 15c (3,7,4'-trimetil-5-acetoxiflavonol)	.194
Figura II.114. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substância 15c (3.7.4'-	
trimetil-5-acetoxiflavonol)	194
Figura II 115 Espectro de RMN de ${}^{13}C$ (125 MHz CDCl ₂) da substância 15c (3.7.4'-	
trimetil-5-acetoxiflavonol)	195
Figure II 116 Espectro de RMN HMOC (1 H = 500 MHz 13 C = 125 MHz CDCl ₂) da	.175
substâncie 15c (2.7.4' trimetil 5 sectoviflevenel)	105
Substancia ISC $(5,7,4$ -triffictin-5-acctoxifiavonol)	. 195
Figura 11.117. Espectro de RMIN de H (500 MHZ, Metanol- a_4) mistura das substancias	107
16 (acido benzoico), 17 (<i>cis-p</i> -acido cumarico) e 18 (<i>trans-p</i> -acido cumarico)	. 197
Figura II.118. Espectro de RMN COSY (500 MHz, DMSO- d_6) mistura das substancias	
16 (acido benzóico), 17 (<i>cis-p</i> -ácido cumárico) e 18 (<i>trans-p</i> -ácido cumárico)	. 197
Figura II.119. Espectro de RMN de ¹³ C (125 MHz, DMSO- d_6/D_2O) mistura das	
substâncias 16 (ácido benzóico), 17 (cis-p-ácido cumárico) e 18 (trans-p-ácido	
cumárico)	. 198
Figura II.120. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, DMSO- d_6) mistura	
das substâncias 16 (ácido benzóico), 17 (cis-p-ácido cumárico) e 18 (trans-p-	
ácido cumárico)	.198
Figura II.121. Espectro de RMN HMOC (¹ H - 500 MHz, ¹³ C - 125 MHz, DMSO- d_6)	
mistura das substancias 16 (acido benzoico). 17 (<i>cis-p</i> -acido cumarico) e 18	
mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i> -acido cumarico) e 18 (<i>trans-p</i> -ácido cumárico)	.199
<pre>mistura das substancias 16 (acido benzoico), 17 (cis-p-acido cumarico) e 18 (trans-p-ácido cumárico)</pre>	. 199
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	. 199 202
 Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-d₆) da substância 19 	.199 .202
 Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 202
 Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO d) de substância 19 	.199 .202 .202
 Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .202
 Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-d₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da 	.199 .202 .202 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) 	.199 .202 .202 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .203 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) da glicose) Figura II.127. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) 	.199 .202 .202 .203 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.127. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) 	.199 .202 .202 .203 .203 .203
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da glicose)	.199 .202 .202 .203 .203 .203 .204
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	.199 .202 .202 .203 .203 .203 .204
 mistura das substancias 16 (acido benzoico), 17 (<i>cts-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico)	. 199 . 202 . 202 . 203 . 203 . 204 . 204
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico). Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	.199 .202 .202 .203 .203 .204 .204
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico). Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	. 199 . 202 . 202 . 203 . 203 . 203 . 204 . 204 . 204
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico). Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	.199 .202 .202 .203 .203 .204 .204 .204
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico). Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d</i>₆) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	. 199 . 202 . 202 . 203 . 203 . 203 . 204 . 204 . 207
 mistura das substancias 16 (acido benzoico), 17 (<i>cis-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico). Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose)	.199 .202 .202 .203 .203 .203 .204 .204 .207 .207
 mistura das substancias 16 (acido benzoico), 17 (<i>cts-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico) Figura II.122. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.123. Espectro de RMN COSY (500 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.124. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.125. Espectro de RMN de ¹³C DEPT (θ=135°, 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.126. Espectro de RMN HMQC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.127. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.128. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.128. Espectro de RMN HMBC (¹H - 500 MHz, ¹³C - 125 MHz, DMSO-<i>d₆</i>) da substância 19 (mistura de flavonóides glicosilados e derivado etílico da glicose) Figura II.128. Espectro de RMN de ¹H (500 MHz, DMSO-<i>d₆</i>) da substância 20 [Biochanina A 7-<i>O</i>-β-D-apiofuranosil-(1→5)-β-D-apiofuranosil-(1→6)-β-D-glicopiranosídio] Figura II.129. Espectro de RMN COSY-¹H-¹H (500 MHz, DMSO-<i>d₆</i>) da substância 20 [Biochanina A 7-<i>O</i>-β-D-apiofuranosil-(1→5)-β-D-apiofuranosil-(1→6)-β-D-glicopiranosídio] Figura II.130. Espectro de RMN de ¹³C (125 MHz, DMSO-<i>d₆</i>) da substância 20 [Biochanina A 7-<i>O</i>-β-D-apiofuranosil-(1→5)-β-D-apiofuranosil-(1→6)-β-D-glicopiranosídio] Figura II.130. Espectro de RMN de ¹	.199 .202 .202 .203 .203 .203 .204 .204 .207 .207
 mistura das substancias 16 (acido benzoico), 17 (<i>cts-p</i>-acido cumarico) e 18 (<i>trans-p</i>-ácido cumárico)	.199 .202 .202 .203 .203 .203 .204 .204 .207 .207

Figura II.131. Espectro de RMN de ¹³ C DEPT (θ =135°, 125 MHz, DMSO- d_6) da	
substância 20 [Biochanina A 7- <i>O</i> - β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil-	
(1→6)-β-D-glicopiranosídio]	
Figura II.132. Espectro de RMN HMQC (¹ H - 500 MHz, ¹³ C - 125 MHz, DMSO- d_6)	
da substância 20 [Biochanina A 7- <i>O</i> - β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil-	
$(1\rightarrow 6)$ - β -D-glicopiranosídio]	. 209
Figura II.133. Espectro de RMN HMBC (1 H - 500 MHz, 13 C - 125 MHz, DMSO- d_6)	
da substância 20 [Biochanina A 7- <i>O</i> - β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil-	
(1→6)-β-D-glicopiranosídio]	
Figura II.134. Espectro de RMN HMBC (1 H - 500 MHz, 13 C - 125 MHz, DMSO- d_6)	
da substância 20 [Biochanina A 7- <i>O</i> - β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil-	
$(1\rightarrow 6)$ -β-D-glicopiranosídio]. Regiões ampliadas: A (δ 4,7-5,0x65-83 ppm), B (δ	
3,2-4,0x100-112 ppm) e C (δ 3,3-4,0x60-80 ppm	
Figura II.135. Espectro de massas de alta resolução MS/MS da substância 20	
[Biochanina A 7- <i>O</i> - β -D-apiofuranosil-(1 \rightarrow 5)- β -D-apiofuranosil-(1 \rightarrow 6)- β -D-	
glicopiranosídio], obtido com ionização elétron spray (IES) e detecção de íons	
positivos	
Figura III.1. Estruturas químicas de substâncias isoladas de anfíbios anuros	
Figura III.2. Estado de defesa de Xenohyla truncata (IZECKSOHN, 1998)	225
Figura III.3. Espectro de IV da substância 21 (acetanilida)	228
Figura III.4. Espectro de RMN de ¹ H (200 MHz, CDCl ₃) da substância 21	
(acetanilida)	
Figura III.5. Espectro de RMN COSY (200 MHz, CDCl ₃) da substância 21	
(acetanilida)	229
Figura III.6. Espectro de RMN de ¹³ C (50 MHz, CDCl ₃) da substância 21 (acetanilida)	229
Figura III.7. Espectro de massas da substância 21 (acetanilida)	230
Figura IV.1. Esquistomicidas utilizados em pacientes com esquistossomose	.234
Figura IV.2. Estrutura das substâncias submetidas ao teste de atividade moluscicida	
Figura IV.3. Estrutura das substâncias submetidas ao teste de edema auricular	

LISTA DE TABELAS

Tabela I.1. Classificação botânica da família Apocynaceae Jussieu (1789) (ENDRESS	
& BRUYNS, 2000)	16
Tabela I.2. Espécies do gênero Plumeria (WOODSON, 1938)	20
Tabela I.3. Constituintes químicos isolados no gênero <i>Plumeria</i>	21
Tabela I.4 . Dados de RMN ¹ H (200 MHz) e ¹³ C (50 MHz) em CDCl ₃ da substância 1	
(3- <i>O</i> -acil de β -amirina) e do produto 1a (β -amirina) comparados com a literatura	
(CARVALHO et al., 2001a; MAHATO & KUNDU, 1994)	38
Tabela I.5. Dados de RMN ¹ H (200 MHz) e ¹³ C (50 MHz) em CDCl ₃ da substância 2	
(Espinasterol) comparados com a literatura (KOJIMA <i>et al.</i> , 1990)	45
Tabela I.6. Dados de RMN ¹ H (200 MHz) e ¹³ C (50 MHz) em Piridina- d_5 da substância	
3 (Acido ursólico) comparados com a literatura (KRIWACKI & PITNER, 1989)	53
Tabela I.7. Dados de RMN 'H (200 MHz) da substância 3 (Acido ursólico) em	
Piridina- d_5 e seus derivados 3a , 3b , 3c e 3d em CDCl ₃ , comparados com valores	
da literatura (KRIWACKI & PITNER, 1989)	54
Tabela I.8. Dados de RMN ¹ H (500 MHz) e ¹³ C (125 MHz) em CDCl ₃ da substância 7	
$(3-O-acil de \beta-amirenonol)$ comparados com a literatura (BARNES <i>et al.</i> , 1984)	68
Tabela II.1. Dados de RMN ¹ H (500 MHz) e ¹³ C (125 MHz) em Piridina- d_5 da	
substância 10 (Solamargina) comparados com a literatura (RIPPERGER, 1995)	106
Tabela II.2. Dados de RMN ¹ H (500 MHz) e 13 C (125 MHz) em Piridina- d_5 da	
substância 11 (<i>epi</i> -Solamargina) comparados com a literatura (RIPPERGER,	105
1995)	107
Tabela II.3. Valores de RMN ⁴ H (500 MHz) e 15 C (125 MHz) em Piridina- d_5 das	
substancias 10 (Solamargina) e 11 (<i>epi</i> -Solamargina) comparados com dados da	100
literatura da β -solamarina e solamargina	. 108
Tabela II.4. Dados de RMN ¹ H (500 MHz) e ¹³ C (125 MHz) em CDCl ₃ da substância	
11a (<i>epi</i> -Solamargina peracetilada) comparados com dados da literatura da	1.40
solamargina (RIPPERGER, 1995)	. 148
Tabela II.5. Dados da substancia 12 (Solasonina) em RIVIN ⁻ H (200 MHz) e ^{-C} C (50	165
MHZ) em Piridina- <i>a</i> ₅ comparados com da literatura (USUBILLAGA <i>et al.</i> , 1997)	105
Tabela 11.0. Dados da substancia 12a (Solasonina peracetilada) RIVIN $H(500/400)$ MHz) a $^{13}C(125/100)$ MHz) am CDCL comparadas com a literatura da solasonina	
$(\text{LISUDILLACA} \neq \pi^{1}$ 1007)	166
(USUBILLAGA el al., 1997)	. 100
rabela 11.7. Dados da inistura dos isolicios 15 (cis -cumarato de etila) e 14 ($ians$ - cumarato de etila) em RMN ¹ H (500 MHz) e ¹³ C (125 MHz) em CDCl.	
comparados com da literatura (PASMUSSEN <i>et al.</i> 1006)	178
Tabela II 8 Dados da substância 15 (Canferol) em RMN 1 H (200 MHz) e 13 C (50	. 170
MH_z) em DMSO-d _c comparados com a literatura (AGRAWAL 1989:	
$H \Delta R B O NF (1994)$	183
Tabela II 9 Dados da substância 15 a (3 7 4'-trimetil-canferol) em RMN ¹ H (200	
MHz) e 13 C (50 MHz) em CDCl ₂ comparados com a literatura (DONG <i>et al</i>	
1999)	184
Tabela II.10. Dados da substância 15b (3 5 7 4'-tetrametil-canferol) em RMN ¹ H (200	
MHz) e 13 C (50 MHz) em CDCl ₃ comparados com a literatura (DONG <i>et al</i>	
1999)	185

Tabela II.11. Dados da substância 15c (3,7,4'-trimetil-5-acetoxiflavonol) em RMN ¹ H	
(200 MHz) e 13 C (125 MHz) em CDCl ₃ comparados com a literatura do 3,7,4'-	
trimetilcanferol (DONG et al., 1999)	186
 Tabela II.12. Dados da mistura das substâncias 16 (ácido benzóico), 17 (<i>cis-p</i>-ácido cumárico) e 18 (<i>trans-p</i>-ácido cumárico) em RMN ¹H (500 MHz) em Metanol-<i>d</i>₄ e ¹³C (125 MHz) em DMSO-<i>d</i>₆, comparados com a literatura (RASMUSSEN <i>et</i> 	100
al., 1996)	190
Tabela II.15. Dados da substancia 19 (mistura de Havonoides glicosliados e derivado etílico da glicose) em RMN ¹ H (500 MHz) e ¹³ C (125 MHz) em DMSO- d_{6_1}	201
comparados com a interatura (SILVA <i>et al.</i> , 2000)	201
Tabela II.14. Dados da substancia 20 [Biochanina A /-O-β-D-apiofuranosil- $(1\rightarrow 5)$ -β-D-apiofuranosil- $(1\rightarrow 6)$ -β-D-glicopiranosídio] em RMN ¹ H (500 MHz) e ¹³ C (125	
MHz) em DMSO- d_6 , comparados com a literatura (SILVA <i>et al.</i> , 2000)	206
Tabela III.1. Dados de RMN ¹ H (200 MHz) e ¹³ C (50 MHz) em CDCl ₃ da substância	227
Tabela IV.1. Triagem da ação moluscicida dos extratos sobre <i>Biomphalaria</i>	
<i>tenagophila</i> (5 caramujos por concentração) em laboratório após exposição por 48 horas, pH 5-7	238
Tabela IV.2. Triagem da ação moluscicida dos extratos sobre <i>Biomphalaria glabrata</i>	
(5 caramujos por concentração) em laboratório após exposição por 48 horas, pH 5-7	238
Tabela IV.3. Triagem da ação moluscicida de substâncias sobre <i>Biomphalaria</i>	
tenagophila (5 caramujos por concentração) em laboratório após exposição por 48	
horas, pH 5-7	238
Tabela IV.4. Atividade moluscicida do extrato dos frutos verdes glicoalcalóides totais	
de S. crinitum Lam. sobre Biomphalaria tenagophila (10 caramujos por	
concentração) em laboratório após exposição por 48 horas, pH 5	238

LISTA DE ESQUEMAS

Esquema I.1. Marcha química para o isolamento das substâncias presentes nos galhos	
de Plumeria lancifolia Müll. Arg.	33
Esquema I.2. Marcha química para o isolamento das substâncias presentes nas folhas	
de Plumeria lancifolia Müll. Arg	34
Esquema I.3. Principais fragmentos referentes aos picos do espectro de massas da	
substância 2 (Espinasterol)	51
Esquema I.4. Principais fragmentos referentes aos picos do espectro de massas da	
substância 8 (Octadecanoato de metila)	82
Esquema II.1. Marcha química para o isolamento das substâncias presentes nos frutos	
verdes de Solanum crinitum Lam.	96
Esquema II.2 Marcha química para o isolamento das substâncias presentes nos	
tricomas dos frutos verdes de Solanum crinitum Lam.	100
Esquema II.3. Proposta de biossíntese para formação de 10 (Solamargina) e 11 (epi-	
Solamargina) adaptado de DEWICK, 2002	105
Esquema II.4. Mecanismo de fragmentação proposto para justificar os picos	
resultantes da ionização em íons positivos detectados no espectro de massas de	
alta resolução da substância 10 (Solamargina)	144
Esquema II.5. Mecanismo de fragmentação proposto para justificar os picos	
resultantes da ionização em íons positivos detectados no espectro de massas de	
alta resolução da substância 11 (epi-Solamargina)	146
Esquema II.6. Mecanismo de fragmentação proposto para justificar os picos	
resultantes da ionização em íons positivos detectados no espectro de massas de	
alta resolução da substância 11a (epi-Solamargina peracetilada)	163
Esquema II.7. Mecanismo de fragmentação proposto para justificar os picos	
resultantes da ionização em íons positivos detectados no espectro de massas	
MS/MS de alta resolução da substância 20 [Biochanina A 7-O-β-D-apiofuranosil-	
$(1\rightarrow 5)$ - β -D-apiofuranosil- $(1\rightarrow 6)$ - β -D-glicopiranosídio]	213
Esquema III.1. Principais fragmentos referentes aos picos do espectro de massas da	
substância 21 (acetanilida)	230

LISTA DE GRÁFICOS

Gráfico IV.1. Reta de regressão linear da atividade moluscicida do extrato dos frutos	
verdes glicoalcalóides totais de S. crinitum Lam. sob Biomphalaria tenagophila	239
Gráfico IV.2. Atividade antioxidante dos extratos metanólico (PLFM) e metanólico	
partição metanol das folhas (PLFMM) de Plumeria lancifolia Müll. Arg. em	
malondialdeído com 4-hidroxinonenal (MDA+4-HNE) gerados em membranas	
eritrocitárias * valores para $p < 0.05$ e **valores para $p < 0.01$	242
Gráfico IV.3. Determinação de TBARS em membranas de células de eritrócitos	
tratadas em diferentes concentrações com o extrato metanólico de folhas de	
<i>Plumeria lancifolia</i> Müll. Arg. (PLFM) ** valores para p<0,01	243
Gráfico IV.4. Determinação de TBARS em membranas de células de eritrócitos	
tratadas em diferentes concentrações com o extrato metanólico partição metanol	
de folhas de <i>Plumeria lancifolia</i> Müll. Arg. (PLFMM) * valores para p<0,05 e	
**valores para <i>p</i> <0,01.	243
Gráfico IV.5. Atividade antioxidante dos extratos metanólico dos tricomas dos frutos	
verdes (SCFVM) e dos glicoalcalóides totais dos frutos verdes (SCFVG) de	
Solanum crinitum Lam. em malondialdeído com 4-hidroxinonenal (MDA+4-	
HNE) gerados em membranas eritrocitárias **valores para p<0,01	244
Gráfico IV.6. Determinação de TBARS em membranas de células de eritrócitos	
tratadas em diferentes concentrações com o extrato metanólico dos tricomas dos	
frutos verdes de Solanum crinitum Lam. (SCTFVM) * valores para p<0,05	245
Gráfico IV.7. Determinação de TBARS em membranas de células de eritrócitos	
tratadas em diferentes concentrações com o extrato de glicoalcalóides totais dos	
frutos verdes de Solanum crinitum Lam. (SCFVG) * valores para p<0,05	245
Gráfico IV.8. Morte de células por tempo de exposição ao extrato metanólico das	
folhas de Plumeria lancifolia Müll. Arg.	247
Gráfico IV.9. Resposta inflamatória das substâncias testadas	251
Gráfico IV.10. Resposta inibitória das substâncias testadas	251

LISTA DE ABREVIAÇÕES E SÍMBOLOS

1D	unidimensional
2D	bidimensional
δ	deslocamento químico (ppm)
А	ampère
Ac	acetila
AM	água-mãe
20	
ax	axial
CC	cromatografia em coluna (pressão atmosférica)
CCF	cromatografia em camada fina
CCP	cromatografia em camada preparativa
CDCl ₂	clorofórmio deuterado
CG-EM	cromatografia com fase gasosa acoplada a espectrometria de massas
CLAE	cromatografia líquida de alta eficiência
COLOC	correlation spectroscopy via long-range couplings
COSY	correlation spectroscopy ou correlated spectroscopy
d	dubleto
dd	duplo dubleto
dl	dubleto largo
DEPT	distortionless enhancement by polarization transfer
$DMSO-d_6$	dimetilsulfóxido deuterado
DNA	deoxyribonucleic acid
D_2O	água deuterada
IE	impacto de elétrons
EM	espectrometria de massas
EMAR	espectrometria de massas de alta resolução
ea	equatorial
F	fração
FIOCRUZ	Fundação Instituto Osvaldo Cruz
HETCOR	heteronuclear chemical shift correlation ou heteronuclear correlation
	spectroscopy
HMBC	heteronuclear multiple-bond correlation
HMQC	heteronuclear multiple-quantum coherence
Hz	hertz
IV	infravermelho
IES	ionização elétron spray
J	constante de acoplamento em hertz
m	multipleto
M ^{+.}	pico do íon molecular
MHz	megahertz
<i>m/z</i> ,	relação massa/carga
nm	nanômetro
MTT	brometo de 3-(4,5-dimetiltiazol-2-il)-2,5-difeniltetrazólio
NOE	nuclear overhauser effect
NOESY	nuclear overhauser enhancement spectroscopy

PCC	clorocromato de piridínio
P.F.	ponto de fusão
Piridina-d5	piridina deuterada
Ppt	precipitado
ppm	parte por milhão
q	quarteto
Rf	fator de retenção
RMN ¹ H	ressonância magnética nuclear de hidrogênio
RMN ¹³ C	ressonância magnética nuclear de carbono-13
RNA	ribonucleic acid
S	singleto
sl	singleto largo
t	tripleto
T.B.	testes biológicos
tl	tripleto largo
TMS	tetrametilsilano
V	volt
UV	ultravioleta

OBS: As abreviaturas e símbolos utilizados neste trabalho e que não constam nesta relação, encontram-se descritas no texto ou são convenções adotadas universalmente.

SUMÁRIO

1 INTRODUÇÃO GERAL	1
2 PARTE EXPERIMENTAL GERAL	4
2.1 Equipamentos e Reagentes	4
2.2 Derivações	4
2.2.1 Metilação com diazometano	5
2.2.2 Acetilação com anidrido acético e piridina	5
2.2.3 Oxidação com PCC (clorocromato de piridínio)	5
2.2.4 Hidrólise alcalina	5
3 SUBSTÂNCIAS ISOLADAS	6
3.1 Plumeria lancifolia Müll. Arg	6
3.2 Solanum crinitum Lam	7
3.3 Xenohyla truncata (IZECKSOHN, 1998)	8
3.4 Derivados Obtidos Através Deste Trabalho	9
4 REFERÊNCIAS BIBLIOGRÁFICAS	11
CAPÍTULO I	12
ESTUDO QUÍMICO DE Plumeria lancifolia Müll. Arg	12
I.1 INTRODUÇÃO	13
I.1.1 A Família Apocynaceae Jussieu (1789)	13
I.1.2 O Gênero Plumeria	19
I.1.3 A Espécie Plumeria lancifolia Müller Arg.	28
I.2 ISOLAMENTO E PURIFICAÇÃO DOS CONSTITUINTES QUÍMICOS	30
I.2.1 Isolamento e Purificação das Substâncias dos Galhos	30
I.2.2 Isolamento e Purificação das Substâncias das Folhas	31
I.2.3 Substâncias Isoladas de Plumeria lancifolia Müll. Arg	35
I.2.4 Derivados Obtidos de Plumeria lancifolia Müll. Arg	36
I.3 RESULTADOS E DISCUSSÃO	
I.3.1 Determinação Estrutural dos Constituintes Isolados de <i>Plumeria lancifolia</i>	25
$\mathbf{Mull. Arg.}$	
1.5.1.1 Determinação estrutural da substancia 1 e seu produto 1a	
1.3.1.2 Determinação estrutural da substancia 2	44
1.3.1.3 Determinação estrutural da substância 3 e seus derivados 3a, 3b, 3c e 3d	
1.3.1.4 Determinação estrutural da substância 4	62
1.3.1.5 Determinação estrutural da mistura das substancias 1 e 5	
1.3.1.6 Determinação estrutural da mistura dos esteres 6	65
1.3.1.7 Determinação estrutural da substancia 7	
1.3.1.8 Determinação estrutural da mistura das substancias 8 e 9	
1.4 REFERENCIAS BIBLIOGRAFICAS	83
	07
CAPITULU II	/ ة ۳۵
	/ ة . مم
II.I INIKUDUÇAU	60 .
11.1.1 Familia Solanaceae	88
11.1.2 U Genero Solanum (L.)	88
II.1.3 A Especie Solanum crinium Lam.	93

II.2 ISOLAMENTO E PURIFICAÇÃO DOS CONSTITUINTES QUÍMICOS	95
11.2.1 Frutos verdes	
11.2.1.1 Substancias isoladas dos trutos verdes de S. <i>crinitum</i> Lam	
11.2.1.2 Derivados obtidos dos trutos verdes de S. <i>crinitum</i> Lam	98
II.2.2 Tricomas dos Frutos Verdes	99
II.2.2.1 Substâncias isoladas nos tricomas dos frutos verdes de S. crinitum Lam	101
II.2.2.2 Derivados obtidos nos tricomas dos frutos verdes de S. crinitum Lam	101
II.3 RESULTADOS E DISCUSSAO	102
II.3.1 Determinação estrutural das substâncias 10 e 11	102
II.3.2 Determinação estrutural do derivado 11a	147
II.3.3 Determinação estrutural da substância 12 e seu derivado 12a	164
II.3.4 Determinação estrutural da mistura dos isômeros 13 e 14	177
II.3.5 Determinação estrutural da substância 15 e seus derivados 15a, 15b e 15c	182
II.3.6 Determinação estrutural da mistura das substâncias 16 com os isômeros 17	
e 18	196
II.3.7 Determinação estrutural da substância 19	
II.3.8 Determinação estrutural da substância 20	
II.4 REFERÊNCIAS BIBLIOGRÁFICAS	
CAPÍTULO III	
ACETANILIDA ISOLADA DO EXSUDADO DE Xenohvla truncata	
(IZECKSOHN, 1998)	
III.1 INTRODUCÃO	
III.1.1 Família Hylidae	
III 1 2. Xenohyla truncata (IZECKSOHN 1998)	225
III 2 OBTENÇÃO DO EXSUDADO DE Xenobyla truncata (IZECKSOHN 1998)	
III 2 1 Substância Isolada	
III 3 RESULTADOS E DISCUSSÃO	
III 3.1 Determinação Estrutural da Substância 21	
III.4. DEFEDÊNCIAS RIBI IOCDÁFICAS	
III.4 REFERENCIAS DIDLIOGRAFICAS	431
CADÍTLU Ο IV	222
ΔΤΙΛΊΡΑ DES ΡΙΟΙ ΌΓΙCAS	434
$\mathbf{X} 1 \mathbf{A} \mathbf{T} \mathbf{V} \mathbf{I} \mathbf{D} \mathbf{A} \mathbf{D} \mathbf{E} \mathbf{M} \mathbf{O} \mathbf{I} \mathbf{U} \mathbf{S} \mathbf{O} \mathbf{C} \mathbf{O} \mathbf{D} \mathbf{A}$	
IV.1 1 Introducão	433
IV.1.2 Mataria a Mátadas	433
IV.1.2 Materials e Metodos	
IV.1.2.1 Obtenção dos extratos e substancias puras	
IV.1.2.2 Bioensalo com o caramujo	230
1V.1.5 Kesultados	251
IV.2 AVALIAÇAO DA ATIVIDADE ANTIOXIDANTE	240
IV.2.1 Introdução	240
IV.2.2 Materiais e Métodos	241
IV.2.2.1 Preparação dos extratos	
IV.2.2.2 Procedimento experimental	241
IV.2.3 Resultados	242
IV.2.3.1 Atividade antioxidante de <i>Plumeria lancifolia</i> Müll. Arg	242
IV.2.3.2 Atividade antioxidante de Solanum crinitum Lam	
IV.3 TESTE DO EFEITO CITOTÓXICO EM CÉLULAS PERITONEAIS DE	
CAMUNDONGOS ALBINOS (SW)	
IV.3.1 Materiais e Métodos	

IV.4 ENSAIO DE EDEMA AURICULAR 24 IV.4.1 Introdução	IV.3.2 Resultados	
IV.4.1 Introdução. 24 IV.4.2 Materiais e Métodos 24 IV.4.2 Materiais e Métodos 24 IV.4.2.1 Obtenção das substâncias 24 IV.4.2.2 Reagentes 24 IV.4.2.3 Animais 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular 25 IV.4.3 Análises dos Dados 25 IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 (Viannia) braziliensis 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Resultados 25 IV.5.2.4 Procedimento experimental 25 IV.5.2.5.2 Procedimento experimental 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Resultados 25 IV.5.2.4 Procedimento experimental 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Resultados 25 IV.5.2.4 Procedimento experimental 25 IV.5.2.5.2 Procedimento experimental	IV.4 ENSAIO DE EDEMA AURICULAR	
IV.4.2 Materiais e Métodos 24 IV.4.2.1 Obtenção das substâncias 24 IV.4.2.2 Reagentes 24 IV.4.2.3 Animais 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular 25 IV.4.2 Análises dos Dados 25 IV.4.3 Análises dos Dados 25 IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2 Anderiais e Métodos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Posultados 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.3 Posultados 25	IV.4.1 Introdução	
IV.4.2.1 Obtenção das substâncias 24 IV.4.2.2 Reagentes 24 IV.4.2.3 Animais 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular 25 IV.4.3 Análises dos Dados 25 IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Resultados 25 IV.5.2.4 Resultados 25 IV.5.2 Materiais e Métodos 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.3 Resultados 25 IV.5.4 Resultados 25 IV.5.5.2 Procedimento experimental 25 IV.5.3 Resultados 25 IV.5.4 Resultados 25 IV.5.5 Resultados 25	IV.4.2 Materiais e Métodos	
IV.4.2.2 Reagentes 24 IV.4.2.3 Animais 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular 25 IV.4.2 Análises dos Dados 25 IV.4.3 Análises dos Dados 25 IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Resultados 25 IV.5.2.4 Resultados 25 IV.5.2.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.2 Procedimento experimental 25 IV.5.3 Resultados 25	IV.4.2.1 Obtenção das substâncias	
IV.4.2.3 Animais 25 IV.4.2.4 Procedimento experimental para o ensaio de edema auricular	IV.4.2.2 Reagentes	249
IV.4.2.4 Procedimento experimental para o ensaio de edema auricular	IV.4.2.3 Animais	
IV.4.3 Análises dos Dados 25 IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2 Resultados 25 IV.5.2.3 Resultados 25 IV.5.2.4 Procedimento experimental 25 IV.5.2.5 Procedimento experimental 25 IV.5.3 Resultados 25	IV.4.2.4 Procedimento experimental para o ensaio de edema auricular	
IV.4.4 Resultados 25 IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania 25 (Viannia) braziliensis 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2 Resultados 25 IV.5.2 Procedimento experimental 25 IV.5.3 Resultados 25	IV.4.3 Análises dos Dados	
IV.5 INIBIÇÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania (Viannia) braziliensis 25 IV.5.1 Introdução 25 IV.5.2 Materiais e Métodos 25 IV.5.2.1 Preparação dos extratos 25 IV.5.2.2 Procedimento experimental 25 IV.5.2.3 Posultados 25	IV.4.4 Resultados	
(Viannia) braziliensis	IV.5 INIBICÃO METABÓLICA EM PROMASTIGOTAS DE Leishmania	
IV.5.1 Introdução.25IV.5.2 Materiais e Métodos.25IV.5.2.1 Preparação dos extratos .25IV.5.2.2 Procedimento experimental .25IV.5.3 Posultados25	(Viannia) braziliensis	252
IV.5.2 Materiais e Métodos	IV.5.1 Introducão	252
IV.5.2.1 Preparação dos extratos	IV.5.2 Materiais e Métodos	252
IV.5.2.2 Procedimento experimental	IV.5.2.1 Preparação dos extratos	252
IV 5.3 Posultados 25	IV.5.2.2 Procedimento experimental	252
1 V.J.J NCSUILAUVS	IV.5.3 Resultados	
IV.6 REFERÊNCIAS BIBLIOGRÁFICAS25	IV.6 REFERÊNCIAS BIBLIOGRÁFICAS	
CONCLUSÕES	CONCLUSÕES	

1 INTRODUÇÃO GERAL

Assim como os animais, os vegetais sofrem constantes agressões por agentes bióticos e abióticos. Vírus, bactérias, fungos, insetos e outros organismos podem causar doenças ou danos físicos através de mecanismos específicos. Em geral, agentes não biológicos como a radiação ultravioleta, temperatura, umidade, etc., danificam os tecidos. Hoje, as plantas são cada vez mais agredidas por fatores não naturais, decorrentes do aumento da poluição do ar, do solo e da água, devido a produtos tóxicos presentes em rejeitos industriais e domésticos. Isso altera o ambiente, gerando fenômenos locais como chuvas ácidas e até globais como efeito estufa (aumento gradual da temperatura atmosférica) (PINHEIRO *et al.*, 1999). Apesar das aparências, as plantas não aceitam de modo passivo essas agressões. Para sobreviver, elas evoluem desenvolvendo mecanismo de respostas a danos e doenças. Segundo HARBORNE (1997), estas adaptações e resistências traduzem-se por profundas alterações no metabolismo da célula vegetal podendo envolver modificações morfológicas, anatômicas, fisiológicas e/ou fitoquímicas, revelando alterações bioquímicas tanto no metabolismo primário quanto no especial.

O metabolismo primário das plantas gera substâncias essenciais para a manutenção das atividades básicas e vitais como, por exemplo, os açúcares, aminoácidos, ácidos graxos, nucleotídeos e derivados poliméricos (polissacarídeos, proteínas, lipídios, RNA, DNA, etc.); e o metabolismo especial responde pela defesa das plantas contra herbívoros, microrganismos, estresse ambiental, atração de polinizadores, função estrutural, além de outras particularidades. Esta defesa de natureza química, conhecida como fitoxina ou aleloquímica, é essencial à sobrevivência das espécies.

As plantas sintetizam e liberam inúmeras substâncias voláteis (ácidos, aldeídos e terpenos) para atrair polinizadores e se defender de herbívoros. No que concerne à essa defesa contra herbívoros, as plantas desenvolveram dois tipos de defesa, a direta e a indireta. Na defesa direta estão envolvidas substâncias como sílica, metabólitos especiais, enzimas e proteínas, além de órgãos como tricomas e espinhos que afetam diretamente o desempenho dos insetos, por exemplo. Na defesa indireta estão envolvidas substâncias emitidas pela planta, que atraem parasitas e predadores do inseto fitófago, por exemplo. Terpenos e fenilpropanóides voláteis sintetizados por espécies vegetais podem ter, dependendo do inseto em análise, propriedades atrativas (alimentação, polinização) e/ou deterrentes e inseticidas. Nos últimos anos, óleos essenciais obtidos de plantas têm sido considerados fontes em potencial de substâncias biologicamente ativas. Tem-se enfatizado as propriedades antimicrobianas, antitumoral e inseticida de compostos voláteis, além da ação sobre o sistema nervoso central. Os óleos essenciais obtidos de Mentha pulegium e M. spicata, por exemplo, são muito eficazes como inseticidas. Os monoterpenos pulegona, mentona e carvona (Figura 1, pág. 02) foram considerados tóxicos para larvas de Drosophila melanogaster (SIMAS et al., 2004). É deste metabolismo especial que provem a maioria dos produtos naturais farmacologicamente ativos e que possuem grande valor agregado devido às suas aplicações como medicamento, cosméticos, alimentos e agroquímicos.

A avaliação do potencial terapêutico de plantas medicinais e de alguns de seus constituintes, tais como flavonóides, alcalóides, triterpenos, sesquiterpenos, taninos, lignanas, etc., tem sido objeto de incessantes estudos, onde já foram comprovadas as ações farmacológicas através de testes pré-clínicos com animais. Muitas destas substâncias têm grande possibilidade de futuramente virem a serem aproveitadas como agentes medicinais (CECHINEL FILHO & YUNES, 1997), constituído, sobretudo, modelo para o desenvolvimento de medicamentos sintéticos modernos, tais como procaína (Figura 1, pág.

02), cloroquina (Figura 1, pág. 02), tropicamida (Figura 1, pág. 03), ou de fármacos imprescindíveis como, vimblastina (Velban[®]), vincristina (Oncovin[®]), podofilotoxina e os análogos etoposídeo (VP-16-213; Vepeside[®]) e teniposídeo (VM-26; Vumon[®]), taxol (Paclitaxel, Taxol[®]) e mais recentemente camptotecina (Figura 1, pág. 03) e derivados, com participação num mercado que movimenta cerca de 50 bilhões de dólares anualmente (PINTO *et al.*, 2002).

O uso de plantas medicinais, pelo homem, como fonte de cura para suas enfermidades, constituiu durante séculos a base terapêutica para a cura de diversas doenças (SIMÕES *et al.*, 1989).

As plantas medicinais constituem recurso primário natural na medicina tradicional e também da indústria farmacêutica. Grandes quantidades são usadas no preparo de infusões e decocções tanto nos países onde a medicina tradicional é o recurso terapêutico social e economicamente mais viável. Tem-se observado que nos países industrializados tem sido crescente a parcela da população que vem usando as plantas medicinais. Grandes quantidades de plantas são utilizadas pela indústria no preparo de um largo espectro de derivados de extratos com um alto conteúdo de constituintes ativos podendo, inclusive, chegar a produtos quimicamente puros para serem usados diretamente como medicamento ou como componente na elaboração de outros produtos.

A química de produtos naturais tem por objetivo imediato o esclarecimento e o registro dos constituintes resultantes do metabolismo especiais dos seres vivos, através do isolamento e elucidação de suas estruturas moleculares. Isso permite a descoberta de fontes de substâncias ativas além de contribuir para o entendimento da biodiversidade, facilitando assim sua proteção, conservação e utilização em favor da humanidade. Embora compreenda, assim, o estudo de composição química de animais e vegetais, é no campo da fitoquímica que se encontra o maior número de trabalhos publicados.

O presente trabalho consiste no estudo químico das espécies vegetais *Plumeria lancifolia* Müll. Arg. (galhos e folhas) e *Solanum crinitum* Lam. (frutos verdes e tricomas dos frutos verdes) e do anfibio anuro *Xenohyla truncata* (IZECKSOHN, 1998), através do isolamento, purificação e determinação estrutural dos principais metabólitos especiais.

Aliado ao estudo químico inclui-se a preparação de derivados dos constituintes isolados, fazer a completa atribuição de dados espectrométricos e avaliar algumas atividades biológicas de extratos e/ou das substâncias isoladas das diferentes partes das plantas estudadas ou de seus derivados.

Figura 1. Estruturas químicas

Figura 1. Continuação

2 PARTE EXPERIMENTAL GERAL

2.1 Equipamentos e Reagentes

Os pontos de fusões (P.F.) foram determinados em bloco de Kofler adaptado a microscópio sem correções dos valores. Os espectros no infravermelho foram obtidos em espectrofotômetro Perkin-Elmer 1600/1605 FT-IR em pastilha de KBr. Os espectros de Ressonância Magnética Nuclear de ¹H e ¹³C (incluindo experimentos especiais ¹D e 2D) foram obtidos com espectrômetros Bruker modelo AC-200 (¹H: 200 MHz e ¹³C: 50 MHz) da UFRuralRJ, JEOL modelo JNM-GX-400 (¹H: 400 MHz e ¹³C: 100 MHz) da UENF, Bruker modelo AC-400 (¹H: 400 MHz e ¹³C: 100 MHz) da FIOCRUZ e Bruker modelo DRX-500 (¹H: 500 MHz e ¹³C: 125MHz) da UFCE e FIOCRUZ. Como padrão interno foi usado tetrametilsilano (TMS). Os deslocamentos químicos (δ) foram obtidos em parte por milhão (ppm) e as constantes de acoplamento (J) foram medidos em Hertz (Hz). Os espectros de massas de alta resolução foram obtidos por ionização elétron spray (IES) em um espectrômetro VG 7070E-HF (UNICAMP), usando na injeção íons positivos. Os espectros de massas de baixa resolução foram registrados em cromatógrafo com fase gasosa HP-5880A acoplado a espectrômetro de massas computadorizado HP-5897A de analisador de íons quadrupolo e ionização por impacto de elétrons, 70 Ev, CG/EM Varian Saturn 2000 da UFRuralRJ e CG/EM HP-5989A, CG/EM QP-5050 A, Shimadzu, com injeção direta, utilizando impacto de elétrons (IE) da UENF.

As cromatografias em coluna foram realizadas utilizado como fase estacionária gel de sílica (230-400 e 70-230 mesh, Vetec) e Sephadex LH-20 (Sigma, USA). A cromatografia em camada preparativa (CCP) foi feita em placas de gel de sílica 60 PF₂₅₄, Merck e Vetec, sobre suporte de vidro e espessura de 1 mm. As análises em cromatografia em camada fina (CCF) foram realizadas em cromatofolhas em alumínio 20x20 cm com sílica gel 60 F_{254} Merck. Como eluentes foram usados solventes como: Hexano, clorofórmio, diclorometano, acetato de etila, acetona, n-butanol e metanol, puros ou misturas de polaridades crescentes. Como reveladores foram utilizados, além da detecção por irradiação ultravioleta (254 e 365 nm) os reagentes descritos abaixo (MATOS, 1997):

- 1. Dragendorff (solução de nitrato básico de bismuto II em ácido acético diluído com iodeto de potássio), reagente para detecção de alcalóides e outros compostos nitrogenados.
- 2. Liebermann Burchard (20 mL de anidrido acético e 20 mL de ácido sulfúrico diluídos em 200 mL de etanol, em banho de gelo), seguido de aquecimento, reagente para terpenos e esteróides.
- 3. Soluções de AlCl₃-EtOH (1%), seguido de aquecimento, reagente para flavonóides.
- 4. Sulfato cérico (1%)-H₂SO₄ (10%), seguido de aquecimento, detecta uma série de substâncias como compostos orgânicos iodados, terpenos e flavonóides.

2.2 Derivações

Os derivados das substâncias isoladas das espécies *Plumeria lancifolia* Müll. Arg. e *Solanum crinitum* Lam foram utilizados na realização de testes biológicos e, em alguns casos, as análises dos dados espectrométricos foi facilitada, devido ao aumento da solubilidade em clorofórmio permitindo, inclusive, a realização de análises com algumas técnicas especiais de RMN.

2.2.1 Metilação com diazometano

A solução de diazometano foi preparada de acordo com a metodologia experimental descrita na literatura (VOGEL, 1989) utilizando o reagente N-metil-N-nitroso-*p*-toluenosulfonamida (Diazald[®]), o qual foi solubilizado (2,14 g) em 30,0 mL de éter etílico dentro de um balão, em seguida foi adicionado uma solução de 10,0 mL de álcool etílico com 0,4 g de KOH. Tampou-se o balão e deixou-se sobre agitação magnética (leve), até a homogeneização. Em seguida adaptou-se o balão ao kit especial de destilação com aquecimento brando em banho-maria. Após a destilação, o diazometano foi condensado em um balão com banho de gelo. Adicionou-se a solução etérea do diazometano em excesso às substâncias dissolvidas em CHCl₃ ou MeOH. O solvente foi evaporado, fornecendo as substâncias metiladas.

2.2.2 Acetilação com anidrido acético e piridina

As substâncias foram dissolvidas em anidrido acético (2,0 mL) e piridina (2,0 mL) e deixados por 48 horas. Posteriormente, esta mistura foi transferida para um funil de decantação onde foi adicionado diclorometano (20,0 mL) e água destilada gelada (50,0 mL), extraindo a fase orgânica e desprezando a aquosa. A solução orgânica foi lavada com água mais três vezes e com HCl 10% (20,0 mL) três vezes para extrair a piridina da fase orgânica. A fase orgânica foi seca com sulfato de sódio anidro (Na₂SO₄). Após evaporação do solvente em rota-vapor e secagem em pistola Abderhalden obtiveram-se as substâncias acetiladas (MATOS, 1997).

2.2.3 Oxidação com PCC (clorocromato de piridínio)

Preparação do PCC: Em um balão foram adicionados 25,0 g de óxido crômico com 45,0 mL de ácido clorídrico 6 N e 19,8 g de piridina. A solução ficou sob agitação magnética a uma temperatura de 40°C por 10 minutos. Após a solução foi resfriada a 10°C, ocorrendo a formação de um precipitado laranja, que foi filtrado e seco (COREY & SCHMIDT, 1979).

<u>Reação:</u> 100,0 mg de PCC foram adicionados a uma solução de 70,0 mg de amostra e 5,0 mL de diclorometano sob agitação magnética à temperatura ambiente por 2 horas. O excesso de solvente foi então evaporado e o material foi filtrado em CC com carvão ativo, tendo como eluente diclorometano.

2.2.4 Hidrólise alcalina

A mistura de ésteres de triterpenos com cadeia alifática foi adicionado 6,0 mL de solução metanólica de KOH a 5%. Esta solução foi adicionada em um balão contendo 60,0 mL de hexano sob agitação magnética e refluxo. Após evaporação do solvente e adição de água (50,0 mL) extraiu-se os triterpenos da solução aquosa com clorofórmio. A solução aquosa alcalina foi acidificada com HCl, para extração de ácidos graxos com acetato de etila (SILVA *et al.*, 1998).

3 SUBSTÂNCIAS ISOLADAS

3.1 Plumeria lancifolia Müll. Arg.

7: 3-*O*-acil de β -amirenonol

3.2 Solanum crinitum Lam.

3.3 Xenohyla truncata (IZECKSOHN, 1998)

21: acetanilida

3.4 Derivados Obtidos Através Deste Trabalho

3d: 3-oxo-ursolato de metila

15a: 3,7,4'-trimetil-canferol

15c: 3,7,4'-trimetoxi-5-acetoxi-flavonol

4 REFERÊNCIAS BIBLIOGRÁFICAS

CECHINEL FILHO, V.; YUNES, R. A. Estratégias para obtenção de compostos farmacologicamente ativos a partir de plantas medicinais. Conceito sobre modificação estrutural para otimização da atividade. *Química Nova*, v. 21, n. 1, p. 9-105, 1998.

COREY, E. J.; SCHMIDT, G. Useful procedures for the oxidation of alcohols involving pyridinium dichromate in aprotic media. *Tetrahedron Letters*, v. 5, p. 399-402, 1979.

HARBORNE, J. B. Biochemical plant ecology. In: DEY, P. M.; HARBORNE, J. B. *Plant biochemistry*. San Diego, Califórnia: Academic Press, 1997, p. 503-515.

MATOS, F. J. A. Introdução a fitoquímica experimental. 2ª ed. Fortaleza: Editora Edições UFC, 1997, 141p.

PINHEIRO, M. M.; SANDRONI, M.; LUMMERZHEIN, M.; OLIVEIRA, D. E. A defesa das plantas contra as doenças. *Ciência Hoje*, v. 25, n. 147, p. 24-31, 1999.

PINTO, A. C.; SILVA, D. H. S.; BOLZANI, V. S.; LOPES, N. P.; EPIFANIO, R. A. Produtos naturais: atualidade desafios e perspectivas. *Química Nova*, v. 25, supl. 1, p. 45-61, 2002.

SILVA, J. R. A.; REZENDE, C. M.; PINTO, A. C.; PINHEIRO, M. L. B.; CORDEIRO, M. C.; TAMBORINI, E.; YOUNG, C. M.; BOLZANI, V. S. Ésteres triterpênicos de *Himatanthus sucuuba* (Spruce) Woodson. *Química Nova*, v. 21, n. 6, p. 702-704, 1998.

SIMAS, N. K.; LIMA, E. C.; CONCEIÇÃO, S. R.; KUSTER, R. M.; OLIVEIRA FILHO, A. M.; LAGE, C. L. S. Produtos naturais para o controle da transmissão da dengue atividade larvicida de *Myroxylon balsamum* (óleo vermelho) e de terpenóides e fenilpropanóides. *Química Nova*, v. 27, n. 1, p. 46-49, 2004.

SIMÕES, C. M. O.; MENTZ, L. A.; SCHENKEL, E. P.; IRGANG, B. E.; STEHMANN, J. R. *Plantas da medicina popular no Rio Grande do Sul.* 3^a ed. Porto Alegre: Editora da Universidade/UFRGS, 1989, p. 176.

VOGEL, A. I. Vogel's Textbook of pratical organic chemistry. 5^a ed., Longman, England, 1989, 433 p.

CAPÍTULO I

ESTUDO QUÍMICO DE Plumeria lancifolia Müll. Arg.

I.1 INTRODUÇÃO

I.1.1 A Família Apocynaceae Jussieu (1789)

A família Apocynaceae descrita por Antoine Laurent de Jussieu pertence à ordem Gentianales, classe Dicotiledonaea, subclasse Sympetalae divisão Angiospermae. É constituída de 424 gêneros e 2.000 espécies divididas em cinco subfamílias: Rauvolfioideae, Apocynoideae, Periplocoideae, Secamonoideae e Asclepiadoideae (Tabela I.1, pág. 16), distribuídas em regiões tropicais e subtropicais, sendo algumas registradas em regiões temperadas. Inclui espécies arbustivas, herbáceas, arbóreas, muitas das quais trepadeiras e suculentas, geralmente com látex branco (ENDRESS & BRUYNS, 2000; EVANS, 2002; MABBERLEY, 1997). Os gêneros mais estudados dessa família são *Alstonia, Aspidosperma, Rauvolfia, Vinca, Tabernaemontana, Mandevilla, Hancornia, Nerium, Strophanthus, Catharanthus, Allamanda, Thevetia, Himatanthus, e Wrightia* (DI STASI & HIRUMA-LIMA, 2002).

Esta família contém uma série muito ampla de alcalóides do tipo indólicos, isolados dos gêneros Alstonia, Aspidosperma, Catharanthus, Hunteria, Pleiocarpa, Tabernaemontana, Rauvolfia e Voacanga; do tipo esteroidais ocorrem em Holarrhena; e do tipo harmano ocorrem em Amsonia e Aspidosperma. Nos gêneros Acokanthera, Carissa, Melodinus, Apocynum, Nerium e Strophanthus ocorrem glicosídeos cardiotônicos. Outros constituintes químicos encontrados na família são os glicosídeos cianogênicos, leucoantocianidinas, saponinas, taninos, cumarinas, ácidos fenólicos, ciclitóis e triterpenos. Outras espécies como Amsonia, Nerium, Vinca, Plumeria (Jasmim), Thevetia (Espirradeira amarela) e Mandevilla (Jasmim chileno) são cultivadas com fins ornamentais, pois, suas flores são chamativas e aromáticas (EVANS, 2002).

No Brasil são encontrados 41 gêneros e aproximadamente 400 espécies, incluindo as arbóreas, como as do gênero *Aspidosperma*, que possui diversas espécies como a Peroba e o Pau-pereira, fornecedores de madeira; a *Hancornia*, com espécies distribuídas nos cerrados e na Amazônia muitas conhecidas como Mangaba e as ornamentais *Tabernaemontana* e *Plumeria*. Além dessas, a família possui espécies trepadeiras, como o gênero *Allamanda*, muito utilizado ornamentalmente, e entre as espécies de pequeno porte temos os gêneros *Mandevilla* e *Thevetia* (DI STASI & HIRUMA-LIMA, 2002).

Seu uso na medicina popular é muito difundido e em razão de suas inúmeras aplicações de caráter terapêutico tem despertado interesse dos químicos de produtos naturais em seus estudos (BARRETO, 1994).

A família Apocynaceae pode ser considerada uma das mais importantes fontes de constituintes químicos de origem vegetal utilizados na medicina moderna. Várias substâncias isoladas a partir de espécies dessa família representam protótipos de classes farmacológicas distintas de drogas e fazem parte da história da Farmacologia e da Terapêutica.

A maioria dos alcalóides isolados e comercializados provém de espécies da família Apocynaceae (BRUNETON, 1995). Espécies como a *Tabernanthe iboga* e *Tabernaemontana* grassa são produtoras de alcalóides tóxicos e medicinais (NEUWINGER, 1998). Da espécie *Catharanthus roseus* são extraídas os alcalóides vimblastina e vincristina (Figura I.1, pág. 14), utilizadas como quimioterápicos antineoplásicos. O alcalóide reserpina (Figura I.1, pág. 14), uma droga anti-hipertensiva é encontrado na espécie *Rauvolfia serpentina*. Do gênero *Alstonia*, as espécies *Alstonia scholaris* e *Alstonia contricta* possuem inúmeros alcalóides bioativos, tais como alstonina, alstonilina e também reserpina (Figura I.1, pág. 14) (DI STASI & HIRUMA-LIMA, 2002). Varias partes da espécie *Nerium oleander* são utilizadas para tratamento de inchaço, lepra e doenças de pele e dos olhos. Suas folhas possuem propriedades cardiotônicas e antibacteriana. Uma fração do extrato das folhas contendo os triterpenos ácido oleanderólico, kanerodiona (Figura I.1, pág. 14), betulina, ácido betulínico, ácido ursólico e ácido oleanólico (Figura I.1, pág. 15) apresentou efeito depressivo ao sistema nervoso central em ratos (SIDDIQUI *et al.*, 1988).

Do gênero *Strophanthus*, as espécies *Strophanthus gratus*, *Strophanthus combe* e *Strophanthus sarmentosus* são ricas em glicosídeos, tais como ouabaína e cimarina (Figura I.1, pág. 15) (DI STASI & HIRUMA-LIMA, 2002).

Outras duas espécies de Apocynaceae, a *Parahancornia amapa*, conhecida popularmente como "amapá" ou "amapazeiro" e a *Himatanthus articulata* são árvores encontradas no Amapá na região amazônica, sendo utilizados pela população (casca e látex) como tônico e anti-sifilítico (ALVES, 2003; BARRETO *et al.*, 1998; CARVALHO *et al.*, 2001c).

Entre as espécies de Apocynaceae estudadas pelo nosso grupo temos a *Himatanthus articulata* da qual foram isolados iridóides e triterpenos (BARRETO *et al.*, 1998), *Dipladenia martiana* que forneceu triterpenos pentacíclicos e flavonóides glicosilados (CARVALHO *et al.*, 2001b). Recentemente estão sendo estudadas a *Laseguea erecta* e o látex de *Parahancornia amapa*.

Várias espécies dessa família têm sido recentemente objeto de estudo como fonte de novas drogas, destacando-se espécies do gênero *Mandevilla, Wrightia* e *Aspidosperma* (DI STASI & HIRUMA-LIMA, 2002).

Figura I.1. Estruturas químicas de substâncias isoladas da família Apocynaceae

Figura I.1. Continuação

I Rauvolfioideae							
1. Alstonieae							
Alstonia	Aspidosperma	Geissospermum	Haplophyton				
Laxoplumeria	Microplumeria	Strempeliopsis	Tonduzia				
Vallesia							
2. Vinceae							
Amsonia	Amsonia Catharanthus Ka		Neisosperma				
Ochrosia	Petchia	Rauvolfia	Vinca				
3. Willughbeeae							
Ancylobotrys	Bousigonia	Chamaeclitandra	Clitandra				
Couma	Cyclocotyla	Cylindropsis	Dictyophleba				
Hancornia	Lacmellea	Landolphia	Leuconotis				
Orthopichonia	Pacouria	Parahancornia	Saba				
Vahadenia	Willughbeia						
4. Tabernaemontan	eae						
Ambelania	Bonafousia	Callichilia	Calocrater				
Carvalhoa	Crioceras	Macoubea	Molongum				
Мисоа	pa Neocouma Rhigospira		Schizozygia				
Spongiosperma	Stemmadenia	Stenosolen	Tabernaemontana				
Tabernanthe	Voacanga	Woytkowskia					
5. Melodineae		•					
Craspidospermum	Diplorhynchus	Dyera	Gonioma				
Kamettia	Melodinus	Pycnobotrya	Stephanostegia				
5. Hunterieae			A X				
Hunteria	Picralima	Pleiocarpa					
6. Plumerieae		*					
Allamanda	Anechites	Comeraria	Cerbera				
Cerberiopsis	Himatanthus	Mortoniella	Plumeria				
Skytanthus	Thevetia						
7. Carisseae							
Acokanthera	Carissa						
8. Alyxieae							
Alvxia	Chilocarpus	Condylocarpon	Lepinia				
Lepiniopsis	Plectaneia	Pteralyxia	1				
	II Aı	oocvnoideae					
1. Wrightieae							
Adenium	Isonema	Nerium	Pleioceras				
Stephanostema	Strophanthus	Wrightia	- 1010001000				
2. Malouetieae	2						
Alafia	Allowoodsonia	Carruthersis	Farauharia				
Funtumia	Holarrhena	Kibatalia	Malouetia				
Malouetiella	Mascarenhasia	Pachypodium	Spirolohium				

Tabela I.1. Classificação botânica da família Apocynaceae Jussieu (1789) (ENDRESS & BRUYNS, 2000)

Tabela I.1.	Continuaç	ão
-------------	-----------	----

3. Apocyneae				
Aganonerion	Aganosma	Anodendron	Apocynum	
Baharuia	Baissea	Beaumontia	Chonemorpha	
Cleghornia	Dewevrella	Elytropus	Epigynum	
Eucorymbia	Forsteronia	Ichnocarpus	Ixodonerium	
Motandra	Odontadenia	Oncinotis	Papuechites	
Parameria	Parepigynum	Sindechites	Trachelospermum	
Urceola	Vallariopsis	Vallaris	_	
4. Mesechiteae				
Allomarkgrafia	lomarkgrafia Galactophora Macrosiphonia			
Mesechites	Quiotania	Secondatia	Telosiphonia	
Tintinnabularia				
5. Echiteae				
Amalocalyx	Angadenia	Artia	Asketanthera	
Cycladenia	Echites	Ecua	Fernaldia	
Hylaea	Laubertia	Macropharynx	Neobracea	
Parsonsia	Peltastes	Pentalinon	Pottsia	
Prestonia	Rhabdadenia	Salpinctes	Stipecoma	
Temnadenia	Thenardia	-	-	
	III Perip	locoideae		
Atherandra	Atherolepis	Baroniella	Baseonema	
Buckollia	Buckollia Camptocarpus Cryptole		Cryptostegia	
Decalepis	Ectadium	Epistemma	Finlaysonia	
Gongylosperma	Gymnanthera	Hemidesmus	Ischnolepis	
Maclaudia	Mangenotia	Meladerma	Mondia	
Myriopteron	Omphalogonus	Pentanura	Pentopetia	
Periploca	Petopentia	Phyllanthera	Raphionacme	
Sacleuxia	Sarcorrhiza	Schlechterella	Stelmacrypton	
Stomatostemma	Streptocaulon	Streptomanes	Tacazzea	
Telectadium	Utleria	Zacateza	Zygostelma	
	IV Secan	nonoideae		
Calyptranthera	Genianthus	Goniostemma	Pervillea	
Rhynchostigma	Secamone	Secamonopsis	Toxocarpus	
Trichosandra				
	V Asclep	iadoideae		
1. Marsdenieae				
Absolmsia	Anatropanthus	Anisopus	Asterostemma	
Campestigma	Cathetostemma	Cibirhiza	Clemensiella	
Cosmostigma	Dischidia	Dolichopetalum	Fockea	
Gongronema	Gunnessia	Heynella	Hoya	
Lygisma	Madangia	Marsdenia	Micholitzia	
Oreosparte	Pseusmagennetus	Pycnorhachis	Rhyssolobium	
Sarcolobus	Spirella	Stigmatorhynchus	Telosma	
Treutlera				

Tabela I.1. Continuação

2. Ceropegieae			
Anisotoma	Brachystelma	Caralluma	Ceropegia
Conomitra	Desmidorchis	Dittoceras	Duvalia
Duvaliandra	Echidnopsis	Edithcolea	Emplectanthus
Frerea	Heterostemma	Hoodia	Huernia
Lavrania	Leptadenia	Macropetalum	Neoschumannia
Notechidnopsis	Ophionella	Orbea	Orthanthera
Pectinaria	Pentasachme	Piaranthus	Pseudolithos
Quaqua	Rhytidocaulon	Riocreuxia	Sisyranthus
Stapelia	Stapelianthus	Stapeliopsis	Tavaresia
Tenaris	Tridentea	Tromotriche	White-sloanea
3. Asclepiadeae			
Acrocoryne	Adelostemma	Aidomene	Amblyopetalum
Amblystigma	Ampelamus	Anomotassa	Araujia
Asclepias	Aspidoglossum	Aspidonepsis	Astephanus
Barjonia	Biondia	Blepharodon	Blyttia
Bustelma	Calathostelma	Calostigma	Calotropis
Cordylogyne	Corollonema	Cyathella	Cyathostelma
Cynanchum	Dactylostelma	Dicarpophora	Dictyanthus
Diploglossum	Diplolepis	Diplostigma	Ditassa
Emicocarpus	Eustegia	Fanninia	Fischeria
Folotsia	Funastrum	Glossonema	Glossostelma
Gomphocarpus	Gonioanthela	Gonolobus	Goydera
Graphistemma	Grisebachiella	Hemipogon	Hickenia
Holostemma	Husnotia	Hypolobus	Ibatia
Jobinia	Kanahia	Karimbolea	Kerbera
Labidostelma	Lachnostoma	Lagenia	Lagoa
Lorostelma	Lugonia	Macroditassa	Macroscepis
Mahawoa	Margaretta	Matelea	Melinia
Meresaldia	Merrillanthus	Metalepis	Metaplexis
Metastelma	Microloma	Miraglossum	Mitostigma
Morrenia	Nautonia	Nematostemma	Nematuris
Nephradenia	Odontanthera	Odontostelma	Oncinema
Orthosia	Oxypetalum	Oxystelma	Pachycarpus
Pachyglossum	Parapodium	Pentabothra	Pentacyphus
Pentarrhinum	Pentastelma	Pentatropis	Peplonia
Pergularia	Petalostelma	Pherotrichis	Philibertia
Platykeleba	Pleurostelma	Podandra	Polystemma
Prosthecidiscus	Pycnostelma	Raphistemma	Rhyncharrhena
Rhyssostelma	Rojasia	Sarcostemma	Sattadia
Schistogyne	Schistonema	Schizoglossum	Schizostemma
Schubertia	Scyphostelma	Seshagiria	Seutera
Solenostemma	Sphaerocodon	Stathmostelma	Steleostemma
Stelmagonum	Stelmation	Stelmatocodon	Stenomeria
Stenostelma	Stuckertia	Tassadia	Telminostelma
Tetraphysa	Trachycalymma	Trichosacme	Turrigera
Tweedia	Tylophora	Urostelma	Vailia
Vincetoxicopsis	Vincetoxicum	Widgrenia	Woodia
Xysmalobium			

I.1.2 O Gênero Plumeria

Inicialmente o gênero *Plumeria* foi confundido com o gênero *Himatanthus* devido a suas semelhanças taxonômicas. Em 1938, Robert E. Woodson Jr., após observar diferenças entre os dois gêneros, decidiu separá-los em dois grupos: *Himatanthus* Willd e *Plumeria* L. (WOODSON, 1938).

O gênero *Plumeria* pertence à subfamília Plumieroideae, é nativo na América do Norte, Sul e oeste da Índia (RAGHUVAN & CHAUHAN, 1971), suas espécies encontram-se amplamente distribuídas nas regiões tropicais (SIDDIQUI *et al.*, 1994). Várias espécies são usadas na Índia (DOBHAL *et al.*, 1999), Indonésia (KARDONO *et al.*, 1990a) e em outras regiões quentes do mundo como plantas ornamentais, em virtude do aroma de suas flores (SIDDIQUI *et al.*, 1990a). No Havaí e no Taiti, suas flores são tradicionalmente utilizadas pelos ilhéus na confecção de colares, pois simbolizam beleza e alegria, sendo oferecidos aos visitantes como sinal de boas-vindas (FAMÍLIA APOCYNACEAE, 2002).

Existem numerosos dados na literatura descrevendo o uso etnomedicinal de plantas pertencentes ao gênero *Plumeria*. Na América do Sul chás das folhas, da casca e da madeira são usados como anti-helmíntico, purgativo, emenagogo e em regiões tropicais para tratamento de várias doenças de pele. A polpa do fruto, látex e a casca do tronco servem na Ásia Oriental como abortivo e purgativo (HAMBURGER *et al.*, 1991).

Existem cerca de 130 espécies (Tabela I.2, pág. 20) de *Plumeria* (WOODSON, 1938), porém apenas algumas espécies como *Plumeria rubra*, *Plumeria bicolor*, *Plumeria lancifolia*, *Plumeria acuminata*, *Plumeria alba*, *Plumeria acutifolia*, *Plumeria abtusifolia* e *Plumeria obtusa* apresentam relatos de estudo fitoquímico.

Este gênero se destaca principalmente pela presença de metabólitos especiais do tipo iridóides, mas também foram encontrados substâncias das classes dos terpenos, alcalóides indólicos, ácidos fenólicos, flavonóides glicosilados, lignanas, e cumarinas. A Tabela I.3 (pág. 21), apresenta uma revisão completa das substâncias especiais isoladas neste gênero.

Extratos de várias espécies de *Plumeria* apresentaram significativa atividade antibacteriana, antifúngica e antiviral. Os iridóides plumericina (**I**), isoplumericina (**II**) e fulvoplumierina (**IX**) isolados de *Plumeria rubra* demonstraram atividade antiviral e antifúngica. A plumericina (**I**) e isoplumericina (**II**) apresentaram atividade moluscicida (DL_{100} 6,25 ppm) frente ao caramujo *Biomphalaria glabrata* transmissor da esquistossomose (HAMBURGER *et al.*, 1991). Veja as estruturas na pág. 24.

Os iridóides fulvoplumierina (**IX**), alancina (**XVIII**) e alamandina (**XIX**) (estruturas na pág. 24), a quinona 2,5-dimetoxi-*p*-benzoquina (**LXIII**) (estrutura na pág. 27), as frações ativas dos extratos com éter de petróleo e com clorofórmio de *P. rubra*, o iridóide plumericina (**I**) (estrutura na pág. 24) e a lignana liriodendrina (**LXV**) (estrutura na pág. 27) da fração aquosa das cascas (*P. rubra*) apresentaram atividade citotóxica quando aplicados a uma linhagem de células de leucemia linfótica (P-388) de ratos e em vários tipos de células cancerígenas humanas (seios, cólon, fibrosarcoma, melanoma do pulmão e carcinoma nasofaringe) (KARDONA *et al.*, 1990a). O iridóide fulvoplumierina (**IX**) (estrutura na pág. 24) também demonstrou potencial atividade no sistema de HIV-1RT (CI₅₀ 45 mg/ml) (TAN *et al.*, 1991).

A espécie *Plumeria acuminata* é encontrada na Ásia e Austrália. Suas folhas secas são usadas por nativos nas Filipinas para fazer cigarros e no tratamento da asma. Diferentes partes da planta são usadas na medicina para tratamento de doenças de pele, febre, hidropisia dispersa (acumulo de líquido no corpo), purgativo e para dor de dente. O extrato aquoso das folhas de *Plumeria acuminata* apresentou atividade agonista para adrenocepetor α mas não para $\beta_{1 e} \beta_2$ e atividade agonista colinérgica relaxante em cobaias parasitadas por *Taenia caeci* e contração no duto eferente de ratos (MUIR & HOE, 1982).

<i>P. acuminata</i> W.T.	<i>P. beatensis</i> Ruiz & Pav.,	P. jamesoni Hook.	<i>P. puberula</i> Müll. Arg.,
Aiton, 1811	1/99	P. kerru G. Don, 183/	1860 D. J. Jaco 1760
<i>P. acutifolia</i> Poir.,	P. bicolor Seem UID.,	<i>P. kunthiana</i> Kosteletzky	<i>P. pudica</i> Jacq., $1/60$
1812 D. C	1924 D. L. C. 1944	P. lambertiana Lindi., 1831	<i>P. purpurea</i> Kuiz & Pav.,
<i>P. africana</i> MIII.,	<i>P. berteru</i> A. DU., 1844	P. lancifolia Muii. Arg., 1000	1/99 Destar Dest or A DC
1/08	P. bicolor., 1852	<i>P. latifolia</i> Plig.	<i>P. retusa</i> Bout. ex A. DC.,
P. anova (L.) Kusby &	P. bigianaulosa Urb.,	<i>P. laurifolia</i> Noronna, 1790	1844 D (Law 1799
Woodson		<i>P. leucantha</i> Lodd.	P. retusa Lam., 1/88
P. alba L., 1755	P. blandfordiana Lodd.	P. longifolia Lam., 1788	P. revoluta Huber, 1915
<i>P. alba</i> Aubl., 1775	P. bracteata A. DC., 1844	P. longifolia Bojer, 1837	revolutifolia Stokes
<i>P. alba</i> A. DC., 1844	<i>P. caracasana</i> Johnston,	P. loranthifolia Mull. Arg.,	<i>P. rubra</i> L., 1/53
P. alba Kunth, 1819	1908	1860 D.L. D. & D. 1700	<i>P. rubra</i> to. acutitolia (\mathbf{D}^{-1})
<i>P. alba</i> var. Alba	<i>P. carinata</i> Ruiz &	P. lutea Ruiz & Pav., 1799	(Poir.) Woodson, 1938
P. alba var. inodora	Pav.,1/99	<i>P. macrophylla</i> Lodd.	
(Jacq.) G. Don, 1838	P. casildensis Urb., 1925	<i>P. malongo</i> Spruce ex Müll.	<i>P. rubra</i> var. acutitolia
P. alba var.	P. cayensis Urb., 1925	Arg., 1860	(Poir.) L.H. Bailey
Jacquiniana A. DC.,	P. clusioides Griseb.	P. martu Mull. Arg., 1860	<i>P. rubra</i> fo. lutea (Ruiz &
1844	<i>P. clusioides</i> var.	P. martiusu Mull. Arg.	Pav.) Woodson, 1938
P. ambigua Mull.	clusioides	P. megaphylla A. DC., 1844	
Arg., 1860	P. clusioides var.	P. mexicana Lodd., 1825	<i>P. rubra</i> fo. Rubra
P. angustiflora Spruce	parviflora (Griseb.) M.	P. microcalyx Standl., 1929	P. rubra to. Iricolor
ex Mull. Arg., 1860	Gomez, 1894	<i>P. milleri</i> G. Don, 1837	(Ruiz & Pav.) Woodson,
P. angustifolia A.	<i>P. cochleata</i> S.F. Blake,	<i>P. mollis</i> Kunth, 1818[1819]	1938 [1937]
DC., 1844	1918 D (D) (1015	P. montana Britton & P.	<i>P. sericifolia</i> C. Wright ex
<i>P. apiculata</i> Urb.,	<i>P. confusa</i> Britton, 1915	Wilson, 1923	Griseb., 1866
$\frac{1919}{D}$	<i>P. conspicua</i> nort. Ex G.	P. mulongo Benth., 1861	P. speciosa Mull. Arg.,
<i>P. arborea</i> Noronna,	Don	P. multiflora Standl., 1930	
1/90	P. cubensis Urb., 1925	P. nivea Loddiges ex Sweet	P. subsessilis A. DC.,
P. arborescens G.	<i>P. cuneata</i> Sm.	P. nivea Mill., 1/68	1844 D
Don, 1837	P. cuspidata Glaz.	P. northiana Lodd.	P. sucuba Spruce
<i>P. articulata</i> vani,	<i>P. arastica</i> Mart.	P. obovata Mull. Arg., 1860	<i>P. sucuuba</i> Spruce ex
1/98	<i>P. dupliciflora</i> Noronna,	P. obtusa L., 1/53	Mull. Arg., 1860
<i>P. attenuata</i> Benth.,	1/90	<i>P. obtusa</i> Bertero ex A. DC.,	<i>P. tarapotensis</i> K. Schum.
1841	<i>P. emarginata</i> Griseb.	1844 D. L. J.	ex Markgr., 1932
<i>P. attenuata</i> var.	<i>P. fallax</i> Mull. Arg., 1860	P. obtusa Lour.	P. tenorii Gasparrini,
Attenuata	<i>P. filifolia</i> Griseb., 1863	P. obtusa var. obtusa	1833
<i>P. attenuata</i> var.	<i>P. floribunda</i> Mull. Arg.,	<i>P. obtusa</i> var. parviflora	P. tenuifolia Lodd.
malongo Mull. Arg.,		Griseb., 1862	P. tricolor Ruiz & Pav.,
1860 D	P. gouani D. Don ex G.	P. obtusa var. sericifolia (C.	1/99
<i>P. attenuata</i> var.	Don, 1837	Wright ex Griseb.) Woodson,	P. tuberculata Lodd.
obtusiiolia Mull. Arg.,	<i>P. nilaireana</i> Mull. Arg.,	1938 [1937]	P. velutina Mull. Arg.,
1800 D (Fall		P. obtusa var. typica	
P. aurantia Endi.	P. hypoleuca Gasparrini,	woodson, 1937	<i>P. velutina</i> var. boliviana
P. aurantia Lodd.		P. obtusifolia Steud.	Kuntze, 1898
P. aurantiaca Steud.	P. inaguensis Britton	P. papuana Scheller, 18/6	P. versicolor Dennhardt,
P. Danamensis UID.,	P. incarnata Mill., 1768	P. paraensis Huber	
1899	P. inoaora Jacq., 1760	P. parvifolia Donn, 1811 D. schward damier Morth, 1821	P. warmingii Mull. Arg.,
P. baranonensis UID.,	P. Jaegeri Mull. Arg.,	P. phageadenica Mart., 1831	D wanth astoma Sobltdl
D heatensis Duiz &	D igmaicansis I odd	<i>F. phageadenica</i> Benui. ex	<i>F. xaninosioma</i> Scilital.,
r . <i>beatensis</i> Kuiz α	F. jamaicensis Loda.		1655
1 av., 1799			

Tabela I.2. Espécies do gênero Plumeria (WOODSON, 1938)

SUBSTÂNCIAS	ESPÉCIES	PARTE DA PLANTA	REFERÊNCIA
IRIDÓIDES			
	P. bicolor	casca	DOBHAL et al., 1999
	P. alba	raiz	COPPEN & COBB, 1983
	P. acutifolia	raiz	ABE et al., 1988
Plumericina (1)	P. rubra	madeira raiz casca	HAMBURGER <i>et al.</i> , 1991 COPPEN & COBB, 1983 KARDONO <i>et al.</i> , 1990a
	P. obtusa	raiz	COPPEN & COBB, 1983
	P. bicolor	casca	DOBHAL et al., 1999
	P. rubra	madeira raiz	HAMBURGER <i>et al.</i> , 1991 COPPEN & COBB, 1983
Isoplumericina (II)	P. alba	raiz	COPPEN & COBB, 1983
	P. obtusa	raiz	COPPEN & COBB, 1983
	P. acutifolia	raiz	ABE et al., 1988
Plumieridio (III) e derivado (IIIa)	P. acutifolia	raiz	ABE et al., 1988
	P. lancifolia	casca	SIDDIQUI et al., 1999
	P. obtusifolia	casca	ADAM et al., 1979
Plumieridio (Agoniadina) (III)	P. rubra	casca tronco, raiz, flor e folha	SIDDIQUI <i>et al.</i> , 1999 COPPEN & COBB, 1983
	P. obtusa	tronco, flor e folha	COPPEN & COBB, 1983
	P. obtusa	tronco, raiz, flor e folha	COPPEN & COBB, 1983
Cumarato de plumieridio (IV)	P. rubra	tronco, raiz, flor e folha	COPPEN & COBB, 1983
	P. alba	tronco, raiz, flor e folha	COPPEN & COBB, 1983
	P. obtusa	tronco, raiz, flor e folha	COPPEN & COBB, 1983
Protoplumericina A (V)	P. rubra	tronco, raiz, flor e folha	COPPEN & COBB, 1983
	P. alba	tronco, raiz e folha	COPPEN & COBB, 1983
1α-plumieridio (VI)	P. acutifolia	raiz	ABE et al., 1988
1α-protoplumericina A (VII)	P. acutifolia	raiz	ABE et al., 1988
8-isoplumieridio (VIII) e	P. acutifolia	raiz	ABE et al., 1988
derivados (VIIIa e VIIIb)	P. alba	tronco, raiz, flor e folha	COPPEN & COBB, 1983
	P. rubra	casca	KARDONO et al., 1990a
Fulvoplumierina (IX)	P. acutifolia	casca	ALBERS-SCHÖNBERG et al., 1962
Plumenosídio (X)	P. acutifolia	raiz	ABE et al., 1988
β-dihidroplumericina (XI)	P. acutifolia	raiz	ABE et al., 1988
13-O-cafeilplumieridio (XII)	P. acutifolia	raiz	ABE et al., 1988
Protoplumericina B (XIII)	P. acutifolia	raiz	ABE et al., 1988
13-deoxiplumieridio (XIV)	P. acutifolia	raiz	ABE et al., 1988
15-dimetilplumieridio (XV)	P. rubra	casca	KARDONO et al., 1990a

Tabela I.3. Constituintes	químicos	isolados no	gênero	Plumeria
---------------------------	----------	-------------	--------	----------

Tabela I.3. Continuação

SUBSTÂNCIAS	ESPÉCIES	PARTE DA PLANTA	REFERÊNCIA
<i>p-E</i> -cumarato de 6"- <i>O</i> -acetilplumieridio (XVI)	P.obtusa	folha	SIDDIQUI et al., 1994
<i>p-Z</i> -cumarato de 6"- <i>O</i> -acetilplumieridio (XVII)	P.obtusa	folha	SIDDIQUI et al., 1994
Alancina (XVIII)	P. rubra	casca	KARDONO et al., 1990a
Alamandina (XIX)	P. rubra	casca	KARDONO et al., 1990a
α -alancidina (XX) e derivado (XXa)	P. rubra	casca	KARDONO et al., 1990a
β-alancidina (XXI) e derivado (XXIa)	P. rubra	casca	KARDONO et al., 1990a
TERPENOS			
Lupeol (XXII)	P. obtusifolia	casca	SCHMIDT et al., 1983
Lupcol (AAII)	P. obtusa	folha	SIDDIQUI et al., 1990a
Acetato de lupeol (XXIII)	P. obtusifolia	casca	SCHMIDT et al., 1983
Ésteres acil lupeois [C ₁₆ a C ₂₆] (XXIV)	P. obtusifolia	casca	SCHMIDT et al., 1983
Ácido betulínico (XXV)	P. obtusa	folha	SIDDIQUI et al., 1999
Betulina (XXVI)	P. obtusa	folha	SIDDIQUI et al., 1989a
Ácido alfitólico (XXVII)	P. obtusa	folha	SIDDIQUI et al., 1992
Estigmasterol (XXVIII)	P. obtusifolia	casca	SCHMIDT et al., 1983
Sitosterol (XXIX)	P. obtusifolia	casca	SCHMIDT et al., 1983
Campesterol (XXX)	P. obtusifolia	casca	SCHMIDT et al., 1983
Oleandrina (XXXI)	P. obtusa	folha	SIDDIQUI et al., 1992
Canerosídio (XXXII)	P. obtusa	folha	SIDDIQUI et al., 1992
Obtusinina (XXXIII) e derivado (XXXIIIa)	P. obtusa	folha	SIDDIQUI et al., 1990b
Obtusilina (XXXIV)	P. obtusa	folha	SIDDIQUI et al., 1990b
Hederagenina (XXXV) e derivado (XXXVa)	P. obtusa	folha	SIDDIQUI et al., 1990b
Obtusidina (XXXVI) e derivado (XXXVIa)	P. obtusa	folha	SIDDIQUI et al., 1990b
Obtusinidina (XXXVII) e derivado (XXXVIIa)	P. obtusa	folha	SIDDIQUI et al., 1990b
Obtusina (XXXVIII) e derivado (XXXVIIIa)	P. obtusa	folha	SIDDIQUI et al., 1992
Ácido obtusílico (XXXIX) e derivados (XXXIXa e XXXIXb)	P. obtusa	folha	SIDDIQUI et al., 1992
Obtusol (XL) e derivado (XLa)	P. obtusa	folha	SIDDIQUI et al., 1999
Ácido zamânico (XLI) e derivados (XLIa e XLIb)	P. obtusa	folha	SIDDIQUI et al., 1999
Ácido ursólico (XLII)	P. obtusa	folha	SIDDIQUI et al., 1999
Ácido ursólico 27- <i>p</i> - <i>E</i> -cumaroiloxi (XLIII) e derivados (XLIIIa e XLIIIb)	P. obtusa	folha	SIDDIQUI et al., 1990a
α-amirina (XLIV)	P. obtusa	folha	SIDDIQUI et al., 1990a
Ácido neurocumárico (XLV)	P. obtusa	folha	SIDDIQUI et al., 1992
Ácido isoneurocumárico (XLVI)	P. obtusa	folha	SIDDIQUI et al., 1992
Ácido cumarobtusanóico (XLVII) e derivados (XLVIIa e XLVIIb)	P. obtusa	folha	SIDDIQUI et al., 1990a

Tabela I.3. Continuação

SUBSTÂNCIAS	ESPÉCIES	PARTE DA PLANTA	REFERÊNCIA
Cumarobtusana (XLVIII) e derivado (XLVIIIa)	P. obtusa	folha	SIDDIQUI et al., 1990a
Ácido obtusilínico (XLIX)	P. obtusa	-	SIDDIQUI et al., 1989b
Ácido obtúsico (L)	P. obtusa	-	SIDDIQUI et al., 1989b
Obtusalina (LI) e derivados (LIa, LIb, LIc, LId, LIe, LIf e LIg)	P. obtusa	folha	SIDDIQUI et al., 1989a
β-amirina (LII)	P. obtusa	folha	SIDDIQUI et al., 1990a
Ácido oleanólico (LIII)	P. obtusa	folha	SIDDIQUI et al., 1989a
Ácido oleanônico (LIV)	P. obtusa	folha	SIDDIQUI et al., 1992
Ácido 6α-hidroxi-3- <i>epi</i> -oleanólico (LV)	P. rubra	parte nova	AKHTAR & MALIK, 1993
Ácido 6α-hidroxi-oleanônico (LVI)	P. rubra	parte nova	AKHTAR & MALIK, 1993
3α-27-dihidroxi-12-oleanana (LVII)	P. rubra	parte nova	AKHTAR & MALIK, 1993
Ácido 3-oxo-olean-12-en-27-oico (LVIII)	P. rubra	parte nova	AKHTAR & MALIK, 1993
CUMARINAS			
Escopoletina (LIX)	P. obtusa	folha	SIDDIQUI et al., 1992
ALCALÓIDES			
Uleina (LX)	P. lancifolia	casca	FRANÇA et al., 2000
Demetoxiaspidospermina (LXI)	P. lancifolia	casca	FRANÇA et al., 2000
Plumerinina (LXII)	P. rubra	casca	KAZMI et al., 1989
QUINONAS			
2,5-dimetoxi-p-benzoquinona (LXIII)	P. rubra	casca	KARDONO et al., 1990a
FLAVONOÍDE			
Plumerubrosídio (LXIV)	P. rubra	casca	KARDONO et al., 1990b
LIGNANA			
Liriodendrina (LXV)	P. rubra	casca	KARDONO et al., 1990a
ÁCIDOS FENÓLICOS			
Ácido ferúlico (LXVI)	P. bicolor	casca	DOBHAL et al., 1999
Éster ferúlico (LXVII)	P. bicolor	casca	DOBHAL et al., 1999
4-hidroxiacetofenona (LXVIII)	P. rubra	madeira	HAMBURGER et al., 1991
Cumarato- <i>p-E</i> -metil (LXIX)	P. obtusa	folha	SIDDIQUI et al., 1992
CARBOIDRATO			
L-(+)-bornesitol (LXX)	P. acutifolia	casca	NISHIBE et al., 1971

Nº	R	R ₁	R ₂	R ₃	R ₄	\mathbf{R}_5	R ₆	R ₇	R ₈
XXXIII	OH	OH	Н	OCOCHCHC ₆ H ₄ pOH	Н	Н	Me	CO ₂ H	Me
XXXIIIa	OH	OH	Н	OCOCHCHC ₆ H ₄ pOMe	Н	Н	Me	CO ₂ Me	Me
XXXIV	Н	OH	Н	Н	()	Me	CO ₂ H	Me
XXXIVa	Н	OAc	Н	Н	()	Me	CO ₂ Me	Me
XXXV	Н	OH	OH	Н	Н	Н	Me	CO ₂ H	Me
XXXVa	Н	OAc	OAc	Н	Н	Н	Me	CO ₂ Me	Me
XXXVI	Н	OH	Н	Н	Н	Н	CO ₂ H	CH ₂ OC ₆ H ₄ pOH	Me
XXXVIa	Н	OAc	Н	Н	Н	Н	CO ₂ Me	CH ₂ OC ₆ H ₄ pOMe	Me
XXXVII	Н	OH	Н	Н	Н	Н	CH ₂ OC ₆ H ₄ pOH	CO ₂ H	Me
XXXVIIa	Н	OAc	Н	Н	Н	Н	CH ₂ OC ₆ H ₄ pOMe	CO ₂ Me	Me
XXXVIII	Н	ОН	Н	OCOCHCHC ₆ H ₄ pOH	Н	Н	Me	CO ₂ H	Me
XXXVIIIa	Н	OH	Н	OCOCHCHC ₆ H ₄ pOMe	Н	Н	Me	CO ₂ Me	Me
XXXIX	Н	OH	Н	Н	Н	Н	CH ₂ OCOCHCHC ₆ H ₄ pOH	Me	CO ₂ H
XXXIXa	Н	OAc	Н	Н	Н	Η	CH ₂ OCOCHCHC ₆ H ₄ pOAc	Me	CO ₂ H
XXXIXb	Н	OAc	Н	Н	Н	Н	CH ₂ OCOCHCHC ₆ H ₄ pOAc	Me	CO ₂ Me
XL	Н	ОН	Н	Н	Н	Н	CH ₂ OH	Me	Me
XLa	Н	OAc	Н	Н	Н	Н	CH ₂ OAc	Me	Me
XLI	Н	OH	Η	Н	Н	Н	Me	$\rm CO_2H$	CH ₂ OCOCHCHC ₆ H ₄ pOH
XLIa	Н	OAc	Н	Н	Н	Н	Me	$\rm CO_2H$	CH ₂ OCOCHCHC ₆ H ₄ pOAc
XLIb	Н	OAc	Н	Н	Н	Н	Me	CO ₂ Me	CH ₂ OCOCHCHC ₆ H ₄ pOAc
XLII	Н	OH	Н	Н	Н	Н	Me	CO ₂ H	Me
XLIII	Н	ОН	Н	Н	Н	Н	CH ₂ OCOCHCHC ₆ H ₄ pOH	CO ₂ H	Me
XLIIIa	Н	OAc	Н	Н	Н	Н	CH ₂ OCOCHCHC ₆ H ₄ pOAc	CO ₂ H	Me
XLIIIb	Н	OAc	Н	Н	Н	Н	CH ₂ OCOCHCHC ₆ H ₄ pOAc	CO ₂ Me	Me
XLIV	Н	OH	Н	Н	Н	Н	Me	Me	Me

(XLV)

(XLVI)

HC

 $(\textbf{XLVII}): R_1 = R_2 = R_4 = OH; R_3 = CO_2H$ $(\textbf{XLVIIa}): R_1 = R_2 = R_4 = OAc; R_3 = CO_2H$ $(\textbf{XLVIIb}): R_1 = R_2 = R_4 = OAc; R_3 = CO_2CH_3$ $(\textbf{XLVIII}): R_1 = R_2 = R_4 = OH; R_3 = CH_3$ $(\textbf{XLVIII}a): R_1 = R_2 = R_4 = OAc; R_3 = CH_3$

 R_4 20 R_3 17 R_5 R_2 R_1 R_2 R_2 R_1 R_2 R_3 R_2 R_3 R_2 R_3 R_3 R_2 R_3 R_3

(XLIX): $R = CO_2H$; $R_1 = CH_2OH$ (L): $R = CH_3$: $R_1 = CO_2H$
R

Nº	R	R ₁	R ₂	R ₃	R ₄	R ₅
LI	Н	OH	CH ₂ OH	Η	Н	Me
LIa	Н	OAc	CH ₂ OAc	Н	Н	Me
LIb	0		СНО	Н	Н	Me
LIc	0		СНО	0		Me
LId	0		CH ₂ OH	Н	Н	Me
LIe	0		OH	Н	Н	Me
LIf	Н	OH	Me	Н	Н	CH ₂ OH
LIg		0	Me	Н	Н	СНО

Nº	R	R ₁	R ₂	R ₃	R ₄	R ₅
LII	Н	OH	Н	Н	Me	Me
LIII	Н	OH	Н	Н	Me	CO ₂ H
LIV	0		Н	Н	Me	CO ₂ H
LV	OH	Н	Н	OH	Me	CO ₂ H
LVI	0		Н	OH	Me	CO ₂ H
LVII	OH	Н	Н	Н	CH ₂ OH	Me
LVIII	Ō		Н	Н	CO ₂ H	Me

H₃CO.

I.1.3 A Espécie Plumeria lancifolia Müller Arg.

É uma planta arbustiva que raramente atinge 8,0 m de altura, de raízes compridas, folhas opostas e lancioladas, suas flores são brancas e os frutos fusiformes (Figura I.2, pág. 29). Reproduz-se através do plantio de sementes, adaptando-se ao clima tropical, preferencialmente o quente e seco, necessitando de plena iluminação.

Segundo Evans (2002), esta espécie é classificada pela sistemática como pertencente

ao:

Reino:	Plantae
Divisão:	Angiospermas
Classe:	Dicotiledôneas
Subclasse:	Simpetalae
Ordem:	Gentianales
Família:	Apocynaceae
Subfamília:	Plumerioideae (=Rauvolfioideae)
Tribo:	Plumerieae
Gênero:	Plumeria
Espécie:	Plumeria lancifolia Müll. Arg.
Sinonímia:	Himatanthus lancifolius (Müll. Arg.) Woodson
	(WOODSON, 1938)

Vulgarmente é conhecida como agoniada, arapuê, tapouca, agonia, agonium, guinamole, sacuíba, jasmim manga, arapou, quina branca, quina-mole, sucuba, sucuriba, arapuê, arapuo, colônia, sucuúba, tapioca, tapouca, tapuoca (AGONIADA, 2002). O nome agoniada provém de seu uso tradicional para cólicas menstruais, quando as mulheres tornam-se "agoniadas" pelas dores das cólicas. As partes utilizadas são as cascas, o látex da casca, flores e folhas (AGONIADA, 2004).

Com relação às propriedades medicinais de *P. lancifolia* Müll. Arg. destacamos o uso de diferentes partes da planta como (AGONIADA, 2004):

Casca: emenogoga e purgativa;

Látex da casca: anti-helmíntica e febrífuga;

Flores: lactescente, galactagoga (aumenta a secreção do leite), antidepressiva, antiasmática, anti-sifilítica, emenogoga, purgativa, anticonceptiva, antiespasmódica, antihelmíntica, desengurgitante (para adenites e gânglios supurados), febrífuga, reguladora dos ciclos menstruais e sedativa;

Folhas: antiasmática, antidepressiva, anti-sifilítica, galactagoga, emenogoga, febrífuga, purgativa;

Toda a planta: antiinflamatória potente (do trato genital feminino) e antidepressiva.

P. lancifolia Müll. Arg. (agoniada) possui ação antiinflamatória e antiespasmódica sobre o útero (demonstrada em laboratório), justificando sua indicação nas dismenorréias. Seus extratos apresentam igual atividade espasmolítica sobre a musculatura lisa do intestino de cobaias. Estudos realizados mostraram que o extrato bruto da planta tem ação protetora da mucosa gástrica induzida por estresse, com indometacina e por álcool (FAMÍLIA APOCYNACEAE, 2002).

Figura I.2. Plumeria lancifolia Müller Arg.

I.2 ISOLAMENTO E PURIFICAÇÃO DOS CONSTITUINTES QUÍMICOS

O material vegetal para estudo da espécie *Plumeria lancifolia* Müll. Arg. constituiu-se de galhos e folhas, coletados no município de Ouro Preto no estado de Minas Gerais, Brasil, em 20 de março de 2001 por Jorge José da Silva, com a colaboração da professora Dra. Alceni Augusta Werle, do Departamento de Química-ICEB da Universidade Federal de Ouro Preto (UFOP). A identificação botânica foi realizada pela professora Maria Cristina Trivelato Messias através de comparação com a exsicata existente no herbário da OUPR-UFOP, sob registro de nº. 91.43.

I.2.1 Isolamento e Purificação das Substâncias dos Galhos

Os galhos de *Plumeria lancifolia* Müll. Arg. foram secos a temperatura ambiente, após coleta e moídos em moinho de facas. Esse material (1,3 Kg) foi submetido a extração através de maceração contínua com os solventes diclorometano e metanol, obtendo os extratos denominados de **PLGD** (*Plumeria lancifolia* galho diclorometano: 34,0 g) e **PLGM** (*Plumeria lancifolia* galho metanol: 23,0 g). Veja a marcha química de isolamento no Esquema I.1, pág. 33.

O extrato **PLGD** (32,35 g) foi dissolvido em metanol/água (9:1) e particionado em funil de decantação com hexano, obtendo-se os extratos *Plumeria lancifolia* galho diclorometano partição hexânica (**PLGDH**: 22,5 g) e *Plumeria lancifolia* galho metanol partição metanol/água (**PLGDM**: 9,8 g). A evaporação dos solventes foi realizada em evaporador rotatório sob pressão reduzida, sendo separadas entre 1,0 g a 2,5 g do extrato bruto e das partições para realização de testes biológicos (T.B.).

O extrato PLGDH (21,0 g) foi incorporado em gel de sílica formando uma pastilha à qual foi cromatografada em coluna cromatográfica em gel de sílica, utilizando-se como eluente inicial diclorometano e aumentando gradativamente a polaridade dos solventes até metanol. Esta primeira coluna forneceu 103 frações de 50,0 mL cada, que foram reunidas em grupos de frações com base em análises de CCF. As frações 1 e 2 (F:1-2: 6,2 g), após serem cristalizadas em acetato de etila e gotas de acetona forneceram 91,28 mg do triterpeno 1 (estrutura na pág. 35) em forma de cristais em ponta de agulhas solúveis em CH₂Cl₂ e CHCl₃, com ponto de fusão (P.F.) 148-152°C. A reação de hidrolise alcalina no éster da cadeia alifática do triterpeno, forneceu 21,6 mg do produto 1a (estrutura na pág. 36). A fração F:09-15 (2,56 g) também cristalizada em acetato de etila e gotas de acetona forneceu 61,0 mg do esteróide 2 (estrutura na pág. 35), um material cristalino incolor em forma de agulhas solúvel em CH₂Cl₂ e CHCl₃ com ponto de fusão de 154-156°C. A fração F:23-45 (5,1 g) foi cromatografada em CC em gel de sílica usando como eluente inicial hexano e em ordem crescente de polaridade até metanol, recolheu-se 50 frações de 125,0 mL cada, que após análises por CCF foram reunidas em grupos de frações. Na fração F:23-45/11-20 (2,25 g) em solução de metanol, ocorreu a formação de um precipitado, o qual separado da água-mãe utilizado-se funil de placa sinterizada, forneceu 60,0 mg do triterpeno 3 (estrutura na pág. 35), na forma de precipitado de cor branca solúvel em piridina ou em mistura com os solventes CH₂Cl₂ ou CHCl₃/MeOH (1:1), tendo ponto de fusão na faixa de 200-215°C.

O extrato **PLGDM** (8,7 g) foi cromatografado em CC em gel de sílica, onde foram obtidas 137 frações de 125,0 mL cada, sendo reunidas em grupo de frações com base em análises de CCF. Da fração **F:38** (87,0 mg) foram obtidos 10,4 mg da substância 4 (estrutura na pág. 35) tendo ponto de fusão em 290-292°C e a fração **F:47-48** (1,3 g) também forneceu 10,6 mg da substância 4 (estrutura na pág. 35). Da fração **F:49-52** (78,0 mg) foi obtida

também a substância **3** (5,0 mg; estrutura na pág. 35). Veja a marcha química de isolamento no Esquema I.1, pág. 33.

Do extrato **PLGM** (20,5 g) fez-se partição líquido/líquido em funil de decantação, dissolvendo o extrato em metanol/água (9:1) e particionando a solução com hexano, obtendose os extratos *Plumeria lancifolia* galho metanol partição hexânica (**PLGMH**: 6,4 g), e *Plumeria lancifolia* galho metanol partição metanol/água (**PLGMM**). A solução metanol/água quando concentrada gerou formação de precipitado o qual foi separado por filtração, obtendo-se os extratos **PLGMMPpt** (1,1 g) e **PLGMM** (12,5 g). A evaporação dos solventes foi realizada em evaporador rotatório sob pressão reduzida, sendo separados entre 0,4 g a 2,5 g das partições para realização de testes biológicos (T.B.) (Esquema I.1, pág. 33).

O extrato **PLGMH** (5,4 g) foi submetido a coluna cromatográfica em gel de sílica tendo como eluente inicial hexano, aumentando a polaridade dos solventes gradativamente até metanol, sendo coletadas 102 frações de 100,0 mL cada. As frações de 11 a 14 (**F:11-14:** 1,1 g) foram reunidas com base nas análises de CCF e apresentaram reação positiva de coloração rosa para o reagente Liebermann Burchard. Através de recristalização foram obtidos 36,6 mg da mistura das substâncias 1 e 5 (estruturas na pág. 35) na forma de cristais de cor branca, tendo P.F. nas faixas de 90-100°C e 152-154°C (Esquema I.1, pág. 33).

I.2.2 Isolamento e Purificação das Substâncias das Folhas

As folhas de *Plumeria lancifolia* Müll. Arg. foram secas a temperatura ambiente após coleta e moídas em moinho de facas. O material triturado (1,1 Kg) foi submetido à extração através de maceração contínua com os solventes diclorometano e com metanol obtendo-se os extratos *Plumeria lancifolia* folha diclorometano (**PLFD**: 32,0 g) e *Plumeria lancifolia* folha metanol (**PLFM**: 34,0 g). Os extratos foram concentrados em evaporador rotativo sob pressão reduzida. Foram separados 1,9 g e 2,5 g respectivamente de cada extrato bruto para realização de testes biológicos. Veja a marcha química de isolamento no Esquema I.2, pág. 34.

O extrato PLFD (30,1 g) foi fracionado em funil de filtração usando gel de sílica na parte inferior do funil, carbonato de cálcio como adsorvente para clorofila na parte intermediária e na parte superior à pastilha em gel de sílica com o extrato. Como eluentes foram utilizados os solventes hexano, onde foram obtidas três frações (PLFDH 01, PLFDH 02, e PLFDH 03) e diclorometano que forneceu a fração PLFDD (10,5 mg). A fração PLFDH 01 (2,6 g) foi cristalizada em acetato de etila e gotas de acetona, fornecendo 172,8 mg da substância 6 (estrutura na pág. 35) em forma de precipitado branco com ponto de fusão 61-63°C, solúvel em CH₂Cl₂ e CHCl₃. A fração PLFDH 02 (3,6 g) cristalizada em acetato de etila e gotas de acetona forneceu 301,1 mg do triterpeno 1 (estrutura na pág. 35) em forma de cristal branco com P.F. de 138-144°C, solúvel CH₂Cl₂ e CHCl₃. A reação de hidrólise alcalina da substância 1, forneceu 88,6 mg do produto 1a (P.F. 168-170°C; estrutura na pág. 36). Da AM da fração PLFDH 02 foi obtido 10,6 mg da substância 7 (P.F. 128-130°C, estrutura na pág. 35) através de cristalização em acetato de etila e gotas de acetona. A fração PLFDH 03 (13,1 g) foi submetida a CC com pressão tendo com fase estacionaria gel de sílica de camada preparativa. A eluição teve início com diclorometano/hexano 1:1 aumentando gradativamente à polaridade dos solventes até metanol. Foram coletadas 47 frações de 500,0 mL cada, e reunidas em grupos de frações conforme análises em CCF. Os resíduos das frações de 7 a 11 (F:7-11: 131,7 mg) reunidas com base em análises em CCF foram recristalizados em acetato de etila e gotas de acetona fornecendo 84,8 mg da substância 1 (estrutura na pág. 35) em forma de cristal branco com ponto de fusão 144-152°C, solúvel CH₂Cl₂ e CHCl₃. Uma reação de hidrólise alcalina da substância 1, forneceu 4,6 mg do produto 1a (Esquema I.2, pág. 34; estrutura na pág. 35).

O extrato **PLFM** (31,5 g) dissolvido em solução metanol/água (9:1) foi particionado em funil de decantação com hexano, obtendo-se os extratos *Plumeria lancifolia* folha metanol partição hexânica (**PLFMH**: 12, g) e *Plumeria lancifolia* folha metanol partição metanol/água (**PLGMM**: 18,82 g). A evaporação dos solventes foi realizada em evaporador rotatório sob pressão reduzida, sendo separados 2,0 g e 2,5 g respectivamente de cada partição para realização de testes biológicos (T.B.). A marcha química para isolamento encontra-se no Esquema I.2, pág. 34.

O extrato **PLFMH** (10,0 g) foi incorporado em gel de sílica formando uma pastilha à qual foi cromatografada em coluna cromatográfica contendo gel de sílica. A eluição da coluna teve início com hexano em ordem crescente de polaridade até metanol. Foram coletadas 157 frações de 125,0 mL cada e reunidas em grupos de frações conforme análises em CCF. Na fração **F:5-8** (1,64 g) ocorreu a formação de um precipitado o qual foi purificado em coluna filtrante, fornecendo 80,82 mg das substâncias 8 e 9 (estruturas na pág. 35), um precipitado de cor branca com ponto de fusão 20 a 45°C. A fração F:31-41 (56,0 mg) forneceu 14,6 mg do triterpeno 4 (estrutura na pág. 35) em forma de precipitado branco. A fração F:145-147 (5,85 g) obtida da eluição em acetato de etila forneceu 3,2 g da substância 3 (estrutura na pág. 35) em forma de um precipitado de cor branca, solúvel na mistura de diclorometano ou clorofórmio com metanol (1:1) ou em piridina, tendo P.F. 238-240°C. A oxidação de 70,0 mg da substância 3 originou 11,6 mg do produto 3a (P.F. 240-246°C; estrutura na pág. 36). A metilação de 303,6 g da substância 3 com Diazald[®] forneceu o produto 3b (300,6 mg, P.F. 130-136°C; estrutura na pág. 36). A acetilação de 85,0 mg do produto **3b** forneceu 16,1 mg do produto 3c (P.F. 220-228°C; estrutura na pág. 36) e a oxidação de 136,0 mg de 3b forneceu 27,8 mg do produto 3d (P.F. 176-182°C, estrutura na pág. 36). Veja marcha química de isolamento no Esquema I.2, pág. 34.

Esquema I.1. Marcha química para o isolamento das substâncias presentes nos galhos de Plumeria lancifolia Müll. Arg.

Esquema I.2. Marcha química para o isolamento das substâncias presentes nas folhas de Plumeria lancifolia Müll. Arg.

I.2.3 Substâncias Isoladas de Plumeria lancifolia Müll. Arg.

7: 3-*O*-acil de β-amirenonol

I.2.4 Derivados Obtidos de *Plumeria lancifolia* Müll. Arg.

3d: 3-oxo-ursolato de metila

I.3 RESULTADOS E DISCUSSÃO

I.3.1 Determinação Estrutural dos Constituintes Isolados de *Plumeria lancifolia* Müll. Arg.

I.3.1.1 Determinação estrutural da substância 1 e seu produto 1a

O espectro no IV (Figura I.3, pág. 39) da substância **1** mostra forte absorção em 2.946 cm⁻¹ e 2.866 cm⁻¹ que corresponde a deformação axial de C-H e bandas de deformação de δ_{C-H} em 1.461 cm⁻¹ e 1.376 cm⁻¹ de CH₃, uma banda intensa de estiramento de carbonila de éster em 1.726 cm⁻¹ e bandas fracas de estiramento de C-O-C em 1.298, 1.250 cm⁻¹, 1.218 cm⁻¹ e 1.178 cm⁻¹. A banda fraca em 1.648 cm⁻¹ pode ser atribuída a estiramento de C=C olefínica.

O espectro de RMN de ¹H (Figura I.4, pág. 39) mostra sinais característicos de triterpeno com aparecimento de sinais de metilas entre δ_{3H} 0,8 e 1,15. O tripleto em δ_H 5,15 (*J*=3,5 Hz) pode ser atribuído ao hidrogênio H-12. Os sinais em δ_H 4,48 (t, *J*=8,8 Hz) e δ_H 2,27 (t, *J*=7,4 Hz, -<u>H</u>₂C-CO₂) representam, respectivamente, hidrogênios do carbono metínico (H-3) e de um grupo acila ligado ao carbono metínico oxigenado (CH-3). Estes dados permitiram identificar a presença de um grupo éster com cadeia alifática ligado a um triterpeno contendo uma dupla ligação.

Os espectros de RMN de ¹³C (Figura I.5, pág. 40) e DEPT Figuras I.6 e I.7, págs. 40 e 41), comprovam a proposta do triterpeno para essa substância. Os sinais em δ_{C} 145,23 e δ_{CH} 121,63 confirmam a presença de carbonos olefínicos (dupla tri-substituída) e o sinal em δ_{CH} 80,58 confirma o carbono carbinólico (CH-3) sustentando um grupo éster. Esse grupo é confirmado pelo sinal de carbonila em δ_{C} 173,74 e sinais adicionais de CH₃ e CH₂ de cadeia carbônica saturada em δ_{CH3} : 13,95, δ_{CH2} , 34,72 e δ_{Cn} 23,56. O número de sinais de metilas, o valor dos deslocamentos químicos da dupla ligação C-13 (δ_{C} 145,23) e o sinal do CH-18 (δ_{CH} 47,22), levam a concluir que a substância **1** pertence à classe dos oleananos. Nesse caso não há efeito γ (proteção) de uma metila ligada no carbono 19 sobre o C-13 e o efeito β (desproteção) da mesma sobre o CH-18. A atribuição dos deslocamentos químicos dos hidrogênios e carbonos foram realizados através da interpretação do espectro HETCOR (Figura I.8, págs. 42) e comparação com valores descritos na literatura para a β -amirina (MAHATO & KUNDU, 1994). O 3-*O*-acil de β -amirina (**1**) tem sido encontrado com freqüência em espécies de Apocynaceae (CARVALHO *et al.*, 2001a), (Tabela I.4, pág. 38).

A substância **1a** (β -amirina) foi obtida através da hidrólise alcalina do 3-*O*-acil de β -amirina (**1**). O espectro na região de IV (Figura I.9, pág. 42) confirma que ocorreu reação através da presença de banda larga de estiramento de grupo hidroxila em 3.409 cm⁻¹ e estiramento de C-O em 1.178 cm⁻¹, ausência de banda intensa de carbonila na região de 1.726 cm⁻¹ e uma banda intensa em 2.945 cm⁻¹ e 2.857 cm⁻¹ de estiramento de C-H. O espectro de RMN de ¹H (Figura I.10, pág. 43) revelou ausência de sinal em δ_H 2,27 (C-2³) e o H-3 é representado por um multipleto em δ_H 3,20, sugerindo a presença de um álcool nesse carbono. No espectro de RMN de ¹³C (Figura I.11, pág. 43) foi observado o sinal de CH carbinólico em δ_{CH} 79,00 (CH-3). Os demais sinais comparados com a literatura são idênticos aos da β -amirina. A Tabela I.4, pág. 38, apresenta os assinalamentos dos deslocamentos químicos de hidrogênio e carbono-13 do 3-*O*-acil de β -amirina (**1**) e da β -amirina (**1a**) comparados com da literatura (CARVALHO *et al.*, 2001a; MAHATO & KUNDU, 1994).

Tabela I.4. Dados de RMN ¹H (200 MHz) e ¹³C (50 MHz) em CDCl₃ da substância **1** (3-*O*-acil de β -amirina) e do produto **1a** (β -amirina) comparados com a literatura (CARVALHO *et al.*, 2001a; MAHATO & KUNDU, 1994)

- 1	
_	

a

	1		1a		MAHATO & KUNDU, 1994	CARVALHO et al., 2001a
С	δ _C	$\delta_{\rm H}$	δ _C	$\delta_{\rm H}$	δ _C	$\delta_{\rm H}$
04	39,70	-	38,70	-	38,0	-
08	37,72	-	38,70	-	38,8	-
10	36,80	-	36,91	-	37,6	-
13	145,23	-	145,16	-	145,1	-
14	41,70	-	41,67	-	41,8	-
17	32,57	-	32,45	-	32,5	-
20	31,08	-	31,06	-	31,1	-
СН						
03	80,58	4,48 (t, <i>J</i> =8,8 Hz)	79,00	3,2 (m)	79,0	4,5 (t, <i>J</i> =8,8 Hz)
05	55,22	0,80 (dd)	55,14	-	55,3	-
09	47,52	1,60 (m)	47,59	-	47,7	-
12	121,63	5,15 (t, <i>J</i> =3,5 Hz)	121,70	5,15 (t, <i>J</i> =3,3 Hz)	121,8	5,25 (t, <i>J</i> =3,6 Hz)
18	47,22	1,80 (m)	47,19	-	47,4	-
CH ₂						
01	38,21	a)1,58; b)1,70	38,55	-	38,7	-
02	26,90	a)0,80 ; b)0,84	27,18	-	27,3	-
06	18,22	a)1,49; b)1,59	18,32	-	18,5	-
0/	32,57	1,35 (m)	32,60	-	32,8	-
11	22,32	1,29 (m)	23,48	-	23,6	-
15	24,84	1,63 (m)	26,10	-	26,2	-
10	26,11	a)0,90; b)1,03	26,87	-	27,0	-
19	40,70	a)0,94,0)1,03	40,70	-	40,9	-
21	34,81	1,09 (m)	34,70	-	34,8	-
22	57,12	a)1,24, 0)1,43	57,09	-	57,2	-
CH ₃						
23	28,05	0,84 (s)	28,00	-	28,2	-
24	16,80	0,84 (s)	15,47	-	15,5	-
25	15,55	0,94 (s)	15,47	-	15,6	-
26	16,80	0,94 (s)	16,78	-	16,9	-
27	25,96	1,10 (s)	25,96	-	26,0	-
28	28,41	0,84 (s)	28,36	-	28,4	-
29	33,33	0,84 (s)	33,30	-	33,3	-
30	23,56	0,84 (s)	23,66	-	23,7	
Cadeia alifátca						
1'	173.74	-				
2'	34.72	2.27 (t. 7.4 Hz)	-	-	-	-
n (CH ₂)	23,56	, . (., , ,)	-	-	-	-
n+1 (CH ₃)	13,95	0,94 (s)	-	-	-	-

Figura I.3. Espectro de IV da substância 1 (3-*O*-acil de β-amirina)

Figura I.4. Espectro de RMN de ¹H (200 MHz, CDCl₃) da substância 1 (3-*O*-acil de β -amirina)

Figura I.5. Espectro de RMN de 13 C (50 MHz, CDCl₃) da substância 1 (3-*O*-acil de β -amirina)

Figura I.6. Espectro de RMN de ¹³C DEPT (θ =90°, 50 MHz, CDCl₃) da substância 1 (3-*O*-acil de β -amirina)

Figura I.7. Espectro de RMN de ¹³C DEPT (θ =135°, 50 MHz, CDCl₃) da substância 1 (3-*O*-acil de β -amirina)

Figura I.8. Espectro de RMN HETCOR (13 C - 50 MHz, 1 H - 200 MHz, CDCl₃) da substância 1 (3-*O*-acil de β -amirina)

Figura I.9. Espectro de IV do produto 1a (β-amirina)

Figura I.10. Espectro de RMN de ¹H (200 MHz, CDCl₃) do produto 1a (β-amirina)

Figura I.11. Espectro de RMN de ¹³C (50 MHz, CDCl₃) do produto 1a (β-amirina)