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RESUMO GERAL 

LISBOA, Francy Junio Gonçalves. Uso da abordagem estatística procrusteana em 
ecologia de solo: caso de estudo envolvendo sistema de integração lavoura-pecuária-
floresta no Cerrado. 2015. 90f. Tese (Doutorado em Agronomia - Ciência do Solo). Instituto 
de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, 
Seropédica, RJ, 2015. 
 
A presente tese fez parte do esforço multinstitucional buscando sustentar a substituição de 
pastagens degradas por sistemas que integrem diferentes tipos de uso da terra, mais 
especificamente aqueles integrando lavoura, pastagem, e floresta plantada, coletivamente: 
sistemas iLPF. Aqui, o foco foi a exploração das potencialidades da abordagem estatística 
denominada análise Procrutes, ou simplesmente Procrustes, na seara de ecologia de planta e 
solo. Basicamente, a tese foi composta por três capítulos onde é descrito com detalhes os 
principais nuances dessa abordagem multivariada ainda pouco utilizada por ecologistas de 
planta e solo. O primeiro capítulo descreve roteiros esquemáticos mostrando como o vetor de 
resíduos derivado da correlação e duas tabelas de dados pela análise Procrustes (chamado 
PAM: Procrustes association metric) pode ser utilizado como representante univariado da 
correlação em outras abordagens estatísticas (ordenação ecológica, regressão, e ANOVA 
seguida de teste de médias). O segundo capítulo da tese, utilizando sugestões do primeiro 
capítulo, tratou de um estudo de caso. Neste caso, fazenda experimental situada no município 
de Cachoeira dourada – GO, e contendo quatro diferentes tipos de uso da terra, dentre os 
quais um sistema iLPF, foi escolhida para a condução do estudo de caso. O objetivo geral foi 
acessar como correlações, no formato de PAM, entre tabelas de dados representadas por 
variáveis individuais de estrutura microbiana (dada por análise de lipídios oriundos do solo; 
PLFA: Phospholipids Fatty Acid) e propriedades individuais de química e física de solo, eram 
moduladas pelo tipo de uso da terra: pastagem degradada, pastagem melhorada, fragmento de 
mata nativa, e sistema iLPF. A hipótese para o estudo de caso foi a de que a relação fungo: 
bactéria, comumente associada a ambientes mais conservativos, era promovida pelo sistema 
iLPF uma vez que tais sistemas são caracterizados pelo aumento da heterogeneidade vegetal 
oriunda da sistematizada introdução de especies arbóreas em meio a pastagem. O terceiro e 
último capítulo da tese foi estritamente dedicado a responder questionamentos técnicos 
referentes à abordagem procrusteana e surgidos depois das publicações dos dois primeiros 
capítulos da tese.  Neste caso, dois dos questionamentos mais comuns foram abordados. 
Foram eles: i) quais são os efeitos da correlação entre colunas/variáveis dentro de uma tabela 
de dados sobre os resultados da análise Procrustes? ii) Pode o vetor de resíduos procrusteanos, 
a PAM, traduzir diferenças entre tratamentos em termos da força de correlação multivariada 
entre duas tabelas de dados? Para o estudo de caso os resultados da corrente tese suportaram 
os sistemas iLPF como potencial alternativa para substituição de pastagens degradadas ao 
levantar indícios de que a heterogeneidade vegetal introduzida nos sistemas iLPF pode 
favorecer o deslocamento da estrutura microbiana  em direção ao domínio de fungos. 
 
Palavras-chave:ILPF. Estrutura Microbiana do Solo. PLFA. Análise Multivariada. Relação 

Fungo:Bactéria 
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GENERAL ABSTRACT 

LISBOA, Francy Junio Gonçalves. Uses of the Procrustean statistical approach in soil 
ecology: a case of study involving an integrated agroecosystem in Brazilian savannah. 
2015.90p. Thesis (Doctor Science in Agronomy, Soil Science). Instituto de Agronomia, 
Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2015. 
 
This thesis is part of a multiple scientific effort seeking to support the replacement of 
degraded brazilian pastures by systems which integrate different land use types such as crop, 
pasture, and forest plantation (collectively known as iCLF systems). Here, the focus was also 
to discuss the potentialities of an unusual statistical multivariate approach called “Procrustes 
Analysis” in the plant and soil ecology framework. The current thesis has three chapters 
through which details of the Procrustes analysis are presented on both technically e intuitively 
manner. The first chapter describes roadmaps showing how the procrustean residual vector 
(so-called PAM: Procrustean association metric), representing the multivariate correlation 
between two or more data tables, can be used as an univariate variable in more user-
traditional statistical approaches such as ecological ordination, regression analysis and 
ANOVA followed by mean comparisons.  The second chapter discussed a case study and had 
as the general objective to use PAMs, depicting the relationships between distance matrices 
from individual soil microbial structure (PLFA: Phospholipids Fatty Acid) and distance 
matrices form soil properties variables (chemical and physic), as response variables in an 
ANOVA framework with land use type as categorical predictor (degraded pasture, improved 
pasture, native fragment and iCLF system). The hypothesis in this case was that the 
fungi:bacteria ratio given by PLFA analysis, a good index of changes in microbial structure as 
response to land use alteration and associated to more conservative soils in terms of carbon 
mineralization, is favored by the man – introduced vegetal heterogeneity which characterizes 
the integration crop – livestock – forest. The last chapter was entirely dedicated to answer 
some technical questions which arose after the publication of the first chapters. Basically the 
two most common questions were: i) Does the increasing number of columns/variables within 
a data table affect Procrustes outcomes? ii) Can the procrustean residual vector, the PAM, 
translate differences between treatments in terms of multivariate correlation as it is used in 
mean comparisons? Specifically for these questions, Procrustes was useful in supporting iCLF 
systems as potential alternative to degraded pasture by raising insights that the man – 
introduced vegetal heterogeneity in such integrated agroecosystem, favor shifts in microbial 
structure toward fungal dominance.  

Keywords: iCLF. Soil microbial structure. PLFA. Multivariate analysis. Fungi: Bacteria 
ratio. 
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1. INTRODUÇÃO GERAL 

No dia 17 de agosto de 2010 a portaria 3.896 emitida pela autoridade monetária 
brasileira, o Banco Central, estabeleceu nova linha de crédito direcionada exclusivamente ao 
financiamento de projetos voltados à sustentabilidade agropecuária. Essa linha de crédito, por 
convenção, foi chamada Programa de Agricultura de Baixa Emissão de Gases do efeito estufa, 
mais resumidamente, programa ABC. A instauração desse programa representou umas das 
primeiras ações de internalização dos compromissos voluntariamente assumidos pelo Brasil 
na Conferência das Partes sobre o Clima (COP-15), realizada entre 7 e 8 de dezembro de 2009 
em Copenhague na Dinamarca. Entre os compromissos assumidos pelo então presidente do 
Brasil, Luis Inácio Lula da Silva, estava a redução, até o ano de 2020, entre 36,1 e 38,9% nas 
emissões dos principais gases causadores do chamado efeito estufa (GEE): dióxido de 
carbono (CO2), metano (CH4) e óxido nitroso (N2O). Alheio a toda sorte de interpretações 
sobre as consequências sociais, econômicas e ambientais do compromisso voluntário 
assumido pelo Brasil, tal responsabilidade colocou o país na rota das potencias emergentes 
com reconhecido senso de responsabilidade ambiental.  

Apesar disso, apenas boas intenções não podem servir de base para a avaliação da 
consecução das ações derivadas da implantação do programa ABC, e a caracterização 
científica surge como elemento básico buscando reforçar, ou refutar, as potencialidades 
advogadas. Dentre as potencialidades que precisam ser estudadas estão aquelas representando 
benefícios oriundos da substituição de pastagens em diferentes estádios de degradação por 
agroecossistemas integrando lavoura-pastagem-floresta, sistemas iLPF, um dos pilares do 
Programa ABC.Nesse contexto, a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) 
dispõe de unidades de referências tecnológica (URTs) espalhadas por todo o Brasil, onde 
sistemas iLPF com diferentes designs foram, ou vem sendo, implementados para estudos 
sobre as consequências sociais, produtivas, e climáticas dessa tipo de agroecossistema 
integrado. Todo esse esforço vem sendo feito por meio de chamadas de editais de agências 
públicas de fomento à pesquisa, sejam federais ou estaduais e, dentre deste universo, o projeto 
intitulado “Agricultura Sustentável no Cerrado e na Transição e na Transição Cerrado-
Amazônia” (Projeto Carbioma, código Embrapa 02.11.05.001.00.00 / CNPq 562601/2010-4). 

Liderado pela pesquisadora Beata Emoki Madari (Embrapa Arroz e Feijão), o projeto 
Carbioma tem como objetivos principais: i) descrever como os processos biofísicos do solo 
são afetados por práticas de manejo do solo, e qual o impacto líquido destas práticas sobre o 
seqüestro de carbono e as emissões de GEE sob os diferentes usos e manejos da terra; ii) 
identificar indicadores (biológicos, químicos ou físicos) adequados para a detecção da 
mudança na qualidade do solo no curto, médio e longo prazo. Particularmente o segundo 
objetivo é por onde gravitam as ações da corrente tese, que corresponde fazer uso dos dados 
biológicos, químicos e físicos levantados para explorar e mostrar as potencialidades de uso de 
abordagem estatística multivariada ainda pouco difundida no âmbito da ecologia de planta e 
solo: a análise Procrustes.  

A tese é apresentada em três capítulos, todos na língua inglesa, uma vez que os textos 
dos dois primeiros capítulos já foram publicados em língua estrangeira. A parte introdutória e 
uma breve revisão de literatura foram acrescentadas e redigidas em português. Alterações de 
formato nos títulos, figuras e no formato de referências bibliográficas referem-se a demandas 
dos periódicos onde os artigos foram submetidos e publicados. O item de conclusões, em 
português, sintetiza as principais conclusões e considerações apresentadas nos três capítulos. 

O primeiro capítulo descreverá roteiros esquemáticos mostrando como o vetor de 
resíduos derivado da correlação e duas tabelas de dados pela análise Procrustes (chamado 
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PAM: Procrustes association metric) pode ser utilizado como representante univariado da 
correlação em outras abordagens estatísticas (ordenação ecológica, regressão, e ANOVA 
seguida de teste de médias).  

O segundo capítulo da tese, utilizando sugestões do primeiro capítulo, tratará de um 
estudo de caso diretamente ligado ao CARBIOMA. Neste caso, fazenda experimental situada 
no município de Cachoeira Dourada – GO, e contendo quatro diferentes tipos de uso da terra, 
dentre os quais um sistema iLPF, foi escolhido para a condução do estudo de caso.  O 
objetivo geral foi acessar como correlações, no formato de PAM, entre tabelas de dados 
representadas por variáveis individuais de estrutura microbiana (dada por análise de lipídios 
oriundos do solo; PLFA: Phospholipids Fatty Acid) e propriedades individuais de química e 
física de solo, eram moduladas pelo tipo de uso da terra: pastagem degradada, pastagem 
melhorada, fragmento de mata nativa, e sistema iLPF. A hipótese para o estudo de caso foi a 
de que a relação fungo: bactéria, comumente associada a ambientes mais conservativos, é 
promovida pelo sistema iLPF uma vez que tais sistemas são caracterizados pelo aumento da 
heterogeneidade vegetal oriunda da sistematizada introdução de espécies arbóreas em meio a 
pastagem.  

O terceiro e último capítulo da tese foi estritamente dedicado a responder 
questionamentos técnicos referentes à abordagem Procrusteana e surgidos depois das 
publicações dos dois primeiro capítulos da tese.  Neste caso, dois dos questionamentos mais 
comuns foram abordados. Foram eles: i) quais são os efeitos da correlação entre 
colunas/variáveis dentro de uma tabela de dados sobre os resultados da análise Procrustes? ii) 
Pode o vetor de resíduos procrusteanos, a PAM, traduzir diferenças entre tratamentos em 
termos da força de correlação multivariada entre duas tabelas de dados? 
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2. REVISÃO DE LITERATURA 

A atividade agrosilvipastoril está entre as principais fontes de carbono antropogênico 
no Brasil (Lapola et al., 2014), e o país, como potência agrícola e um dos poucos países que 
ainda dispõem de áreas para expansão da produção de grãos, proteínas, fibras e agroenergia, 
vem deslocando grande parte de seus esforços para a construção de modelos de agricultura 
mais compatíveis com as demandas ambientais.  

O programa Agricultura de Baixa Emissão de Carbono, Programa ABC, coopta 
esforços de sustentabilidade agrícola tendo como hastes principais: a fixação biológica de 
nitrogênio; o plantio direto; a produção e manutenção de florestas; a recuperação de pastagens 
degradadas; o tratamento de resíduos animais; e a utilização de espécies geneticamente 
adaptadas às condições locais. Além disso, há o fomento de sistemas de integração entre 
lavoura, pecuária, e floresta, doravante chamado iLPF. No que diz respeito ao iLPF, esta 
talvez seja a haste do programa ABC que mais se adeque as aspirações brasileiras para o 
modelo de agricultura nacional no corrente século. Isso devido ao seu caráter aglutinador ao 
se tratar de sistema agrícola que combina cultivo arbóreo, de grãos, e criação de animais de 
forma simultânea e/ou sequencial, com uso intensivo e sustentável da terra, e que proporciona 
a máxima produção de alimentos, fibras e energia por unidade de área. Segundo Balbinoet al. 
(2012), a integração entre lavoura, pecuária, e floresta, está inserida no conceito dos Sistemas 
Agrosilvipastoris e, quando associada à práticas conservacionistas como o plantio direto na 
palha, tem sido postulada como alternativa potencialmente viável para a recuperação de 
pastagens degradadas. 

Ao redor do mundo, as terras sob o uso de pastagens respondem por cerca de 12% do 
carbono total existente na biosfera (Schlesinger, 1977), sendo que 90% desse montante estão 
alocados no solo, seja na biomassa radicular, seja na forma de matéria orgânica associada à 
rizosfera (Parton et al., 1993).Sendo assim, tais ecossistemas podem compreender importante 
dreno de carbono atmosférico quando bem manejados (Connant et al., 2001; Lal et al., 2007). 
Contudo, o modelo de produção animal no Brasil, país com o maior rebanho bovino do 
planeta, traz o ranço histórico do uso irracional dos recursos naturais e, como fruto desse viés, 
é estimado que cerca de 50% da área cultivada com pastos no Cerrado e mais de 60% da área 
de pastagem existente na Amazônia se encontram em algum estádio de degradação (Dias-
Filho & Andrade, 2006; Strassburg et al., 2014). Infelizmente, apesar dos significativos 
avanços obtidos nos últimos anos no combate ao desmatamento, a abertura de áreas para a 
utilização na pecuária extensiva retrata uma realidade ainda em voga no Brasil, representando 
fator de pressão sobre importantes biomas como o Cerrado e a Amazônia (Strassburg et al., 
2014, Lapola et al., 2014).  

A conversão de florestas em pastagens e/ou lavouras é acompanhada da drástica 
alteração na ecofisionomia da paisagem, sendo a redução da biomassa vegetal o ponto mais 
dramático (Wallenius et al., 2011). Florestas podem sequestrar substanciais quantidades de 
carbono em sua biomassa, e a redução na biomassa vegetal como resultado da conversão de 
florestas em pastagens e/ou lavoura pode conduzir a uma sensível redução nos estoques de C 
(Guo & Gifford, 2002).Além da redução na biomassa vegetal, a conversão de floresta para 
pastagem e/ ou lavoura vem associada à redução da diversidade de espécies vegetais, 
configurando um cenário de maior homogeneidade nas condições físicas e químicas do solo, 
incluindo a quantidade e qualidade da matéria orgânica aportada. Esse cenário de redução da 
diversidade heterogeneidade vegetal como resultado da conversão de florestas em pastagens 
foi argumentado como capaz de causar a “homogeneização” da comunidade microbiana do 
solo (Rodrigues et al., 2013). De fato, está bem sedimentado o papel da comunidade 
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microbiana como responsável pela maior parte dos serviços dos ecossistemas relacionados ao 
ambiente do solo, tendo na matéria orgânica a principal arena para as suas interações com as 
plantas e outros membros da biota (Wallenius et al., 2011). Por isso, é normalmente 
hipotetizado que as mudanças no uso da terra, ao afetarem as condições químicas e físicas do 
solo, afetam de forma sensível o tamanho, a atividade e a composição do espectro microbiano 
(Fernandes et al., 2011; Vallejo et al., 2012). Assim, devido à rápida resposta às alterações nas 
condições ambientais, aspectos microbiológicos do solo, como a biomassa e a estrutura da 
comunidade microbiana são apresentados por diversos autores como potenciais indicadores de 
mudanças no uso da terra (Acosta-Martínez et al., 2010; Fernandes et al., 2011; Vallejo et al., 
2012; Moeskops et al., 2012).  

Dentro do diversificado espectro microbiano presente no solo, fungos e bactérias 
formam a base dos dois principais canais de decomposição e transferência de energia para as 
redes tróficas da fauna do solo (Scharroba et al., 2012), compreendendo 90% da biomassa 
microbiana total (Six et al., 2006; Rinnam & Bååth, 2009). Tem sido sugerido que os solos 
com domínio de fungos são comumente associados a menores taxas de mineralização do 
carbono do que aqueles com domínio de bactérias (Bardgett & McAllister, 1999; Six et al., 
2006; van der Heijden et al., 2008; de Vries et al, 2011). As explicações normalmente recaem 
sobre as diferenças estequiométricas existentes na biomassa desses dois grupos (van der 
Heijden et al., 2008). Enquanto a biomassa bacteriana é constituída basicamente de polímeros 
de fácil degradação, baixa relação C:N; fungos são estruturados com polímeros de baixa 
labilidade, ou seja, maior relação C:N (Baldrian et al., 2006). Tais diferenças influenciam nas 
preferências de fungos e bactérias quanto à qualidade dos resíduos orgânicos necessários ao 
crescimento e manutenção (Rousk & Bååth, 2007) e, por consequência, em suas taxas de 
mineralização (van der Heijden et al., 2008; De Dyen et al., 2008). Isso reforça a visão 
difundida de que fungos possuem maior eficiência de crescimento do que bactérias, ou seja, 
produzem mais biomassa por unidade de carbono mineralizado a partir do substrato orgânico 
(Six et al., 2006); sendo comum os estudos sugerindo que sistemas de manejo habilidosos em 
armazenar carbono, são também aqueles com maior dominância relativa de fungos (Bardgett 
& McAllister, 1999;  de Vries & Bardgett, 2012). Estudo conduzidos por de Vries et al. 
(2011), por exemplo, apontou a menor taxa de mineralização de carbono e nitrogênio em 
solos dominados por fungos. Consequentemente, o deslocamento da comunidade microbiana 
em direção ao domínio de fungos ou bactérias poderia antecipar eventos de conservação ou 
perda de carbono pelo solo, servindo como indicador de qualidade de tipos de uso da terra, 
como no caso dos sistemas de integração lavoura-pecuária-floresta, cerne do estudo de caso a 
ser apresentado no segundo capítulo da tese. 

Ecossistemas de pastagens são caracterizados pela alta densidade de raízes nos 
primeiros centímetros do solo, o que contribui para a transferência para o solo de grande 
quantidade de formas de carbono facilmente decomponíveis (Millard & Singh, 2010). Estudos 
têm levantado evidências que substanciam a hipótese de que em solos sob influência da 
pastagemhá o domínio de bactérias em relação aos fungos, atribuindo tal resultado ao maior 
aporte de carbono lábil em comparação aquele fornecido por vegetação de floresta; além das 
perturbações resultantes do aporte de nutrientes minerais, da mecanização do solo, e do 
pastejo (Potthast et al., 2011,2012). Assim, dentro de um sistema que integre pastagem 
manejada com uma ou mais culturas florestais, como é o caso dos sistemas de iLPF no Brasil, 
é esperada a variação espacial na dominância relativa de fungos e bactérias, com bactérias 
prevalecendo no pasto e fungos sendo mais abundantes sob a área de influência do 
componente arbóreo da integração, a qual recebe menos aporte de nutrientes e não é 
constantemente perturbada pelas operações de manejo. Essa hipótese foi testada por Vallejo et 
al. (2012) ao conduzirem investigação sobre comunidade microbiana presente fora e abaixo 
da área de influência do dossel de Prosopis juliflora dentro de uma cronosequência de 
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sistemas integrando pasto e silvicultura na Colômbia. Apesar de encontrarem resultados que 
sustentaram a hipótese estabelecida, atribuindo-os ao específico ambiente químico e físico no 
solo sob a influência arbórea, tais resultados, obviamente não podem ser extrapolados para 
bases globais. Isso porque dentro do da faixa de opções de espécies arbóreas e/ou arbustivas 
para a constituição do componente florestal nos modelos de integração, as diferenças 
ecofisiológicas existentes, como a produção e qualidade de liteira e rizodepósitos, podem 
gerar padrões distintos na variação na estrutura da comunidade microbiana. No Brasil, por 
exemplo, o gênero mais comumente utilizado para a composição do extrato florestal em 
sistemas de integração é o Eucalyptos, e as justificativas são muitas, como o grande número 
de espécies; os múltiplos usos; e a considerável plasticidade ecológica e o rápido crescimento 
(Balbino et al., 2012). Contudo, outras opções para a formação do componente florestal em 
sistemas iLPF vêm ganhando força, como o pinho-cuiabano, o paricá, o mogno africano, a 
acácia, o cedro australiano, a leucaena, e a seringueira. Dessa forma, o contexto brasileiro 
enseja estudos atentando para a comparação de diferentes tipos de sistemas iLPF, algo que 
ainda não foi documentado na literatura. Por exemplo, em recente artigo, Salton et al. (2014) 
levantaram dados derivados de quatorze anos de estudos em sistemas iLPF, os quais 
suportaram os postulados advogando a superioridade agronômica e ecológica dos sistemas 
iLPF em relação às pastagens mal manejadas, as quais, em seu turno, são uma tendência no 
Brasil (Lapola et al., 2014; Strassburg et al., 2014). 

A visualização das comunidades microbianas e dos seus aspectos – biomassa e 
estrutura - pode ser feita a partir de diferentes vitrines, representadas pelas metodologias 
atualmente disponíveis. Reunindo vantagens e desvantagens, a escolha da metodologia 
apropriada terá como base fundamental o objetivo do estudo e a familiaridade do pesquisador 
com a técnica. Entre as opções que mais cresceram para a condução de estudos de ecologia 
microbiana do solo está a análise de ácidos graxos derivados de lipídios extraídos do 
solo.Ácidos graxos são basicamente ácidos carboxílicos com longas cadeias hidrocarbonadas, 
derivados principalmente de moléculas lipídicas. Lipídios, por sua vez, correspondem a um 
amplo conjunto de biomoléculas com diversas funções nas células vivas, caracterizadas 
principalmente pela alta solubilidade em solventes orgânicos e pela baixa solubilidade em 
água. Entre os principais tipos de lipídios existentes nas células vivas estão aqueles associados 
à estruturação das membranas celulares, os fosfolipídios (PLFA do inglês “Phospholipids 
Fatty Acid”); e aqueles vinculados ao armazenamento de energia, os chamados lipídios 
neutros (NLFA do inglês “Neutral Lipids Fatty Acid”). Esses últimos tendo como principais 
representantes os triacilglicerídios, presentes exclusivamente em células eucarióticas (Ruess 
and Chamberlain, 2010). Ambos os tipos, fosfolipídios (PLFA) e neutrolipídios (NLFA), são 
fontes de ácidos graxos de uso potencial como marcadores microbianos do solo (Bååth, 2003).  

Os fosfolipídios são os componentes estruturais mais importantes das membranas 
biológicas, sendo responsivos à variação em tamanho das células microbianas ou, equivalente, 
ao tamanho da biomassa microbiana. Por serem rapidamente degradados após a morte das 
células (Pinkart et al., 2002), e representarem uma proporção relativamente constante da 
biomassa de microrganismos, a soma total dos marcadores graxos é comumente utilizada 
como uma estimativa da biomassa microbiana ativa do solo (Zelles et al., 1999). A estimativa 
da biomassa microbiana por ácidos graxos de fosfolipídios tem se mostrado altamente 
correlacionada a biomassa obtida por métodos mais tradicionais (van Groenigen et al., 2010; 
Langer & Rinklebe, 2011). Com relação à outra fração geradora de marcadores lipídicos 
(NLFA), são poucos os estudos que a consideram, sendo a maior parte deles conduzida sob 
condições de laboratório (ver Olsson et al., 1999 e Bääth, 2003). Baseado em estudos de 
Neidhart et al. (1990), os quais observaram que bactérias não armazenam energia na forma de 
lipídios neutros, tem sido sugerido o uso da variação na relação NLFA/PLFA como indexador 
do status fisiológico dos fungos no solo (Bååth 2003).  
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As propriedades variáveis dos ácidos graxos derivados de lipídios extraídos do solo, as 
quais permitem o seu uso na discriminação entre grupos microbianos pelos ecologistas de 
solo, estão intimamente relacionadas às suas respectivas rotas de biossíntese. Dessa forma, 
grupos de ácidos graxos são relativamente particulares para alguns grupos microbianos (ver 
Ruess & Chamberlain, 2010). Na literatura, as diferentes designações dos ácidos graxos estão 
associadas às propriedades discriminantes associadas à rota de biossíntese. No entanto, um 
padrão básico encontrado é o A: BωC (Zaady et al., 2010), onde a letra A denota o número de 
átomos de carbono da cadeia;  a letra B representa o número de instaurações presentes na 
cadeia carbônica; a letra grega ômega (ω) indica o grupo metil (CH3) terminal da molécula, e 
a letra C indicada a posição da primeira insaturação contada a partir do grupo metil terminal 
(ω). A título de exemplo, o marcador para fungos em geral (18:2ω6) indica dezoito carbonos 
formando a cadeia, duas insaturações, onde a primeira insaturação está a seis carbonos de 
distância do grupamento metil terminal da molécula. Algumas outras notações podem ser 
encontradas na literatura (Tabela 2), como é o caso dos prefixos a e i, os quais indicam 
ramificação anteiso e iso, respectivamente. Os sufixos t e c, por exemplo, indicam 
conformação trans e cis, respectivamente.  Outros, como o α-OH e o β-OH, indicam que as 
hidroxilas estão, respectivamente, na primeira e segunda posição da cadeia contando a partir 
do grupo carboxílico. Há também a designação em que um número vem seguido da notação 
ME, indicando a posição do grupamento metil (CH3) na cadeia hidrocarbonada. Designações 
com prefixo cy indicam a existência de grupamento ciclopropano ao longo cadeia. 
Curiosamente, apesar de ser uma técnica em crescente uso (Frostergard et al., 2011) há 
escassez de trabalhos de ecologia microbiana do solo conduzidos no Brasil e explicitamente 
acessando a alterações na estrutura microbiana do solo por meio da PLFA (Fernandes et al., 
2011).  

Os dados derivados da análise PLFA são naturalmente analisados sob a ótica 
multivariada. Por exemplo, é disseminado o uso das técnicas de ordenações, como Análises 
de Componentes Principais (PCA) e Escalonamento multidimensional não métrico (NMDS), 
para sumarizar a informação contida nas matrizes de dados da PLFA representando a estrutura 
da comunidade microbiana, e assim detectar padrões globais de distinção entre preditores 
categóricos. Também, abordagens multivariadas assimétricas (que atribuem papel de 
explicativa para uma matriz de dados enquanto outra é considerada matriz resposta, Legendre 
& Legendre, 2012) como Análise de Redundância (RDA), vêm sendo utilizadas para acessar a 
resposta linear da tabela de dados PLFA à tabela de dados contendo preditores, por exemplo, 
propriedades químicas e físicas de solo (Bossio et al., 1998;Lundiquist et al., 1999; Hossain & 
Sugyiama, 2012; Ramsey et al., 2012 ). Menos comumente utilizadas, porém, são as 
abordagens multivariadas visando correlacionar tabelas de dados sem a necessidade de 
atribuir papéis de matriz resposta e matriz preditora (ou explicativa) para qualquer uma delas, 
consideradas por Legendre & Legendre (2012) como métodos simétricos. Entre elas está 
análise Procrustes (Gower, 1971). Com respeito à abordagem Procrusteana, ou simplesmente 
análise Procrustes, esta possui características que a torna atrativa para estudos de ecologia de 
solo, como o fornecimento de vetor de resíduos representando o relacionamento multivariado 
na forma univariada e que pode ser utilizado em outras abordagens estatísticas. Contudo, o 
baixo uso dessa abordagem em ecologia de solo mostra a necessidade de esclarecimentos 
sobre as potencialidades dessa abordagem em contexto prático, e nada melhor que uma tese 
de doutorado para isso. Nos próximos capítulos, incluindo o estudo de caso conduzido em 
Cachoeira Dourada (Tabela 2), a análise Procrustes será apresentada em riqueza de detalhes 
de cunho teórico e prático. Por isso, não haverá delonga para revisar tal abordagem na revisão 
de literatura geral a fim de evitar redundância com o que virá a seguir. 
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Tabela 1. Alguns dos principais ácidos graxos utilizados como marcadores, suas 
frações lipídicas de origem e origens biológicas predominantes. 

Tipo de ácido Frequentemente 
encontrados 

Fração lipídica 
de origem 

Origem 
predominante 

Referências 

Saturados     
≥20c, e não 
ramificados 

22:0; 24:0 PLFA e NLFA Plantas 
 
 

ZELLES (1999) 
RUESS et al. ( 2007) 

 
Ramificações iso 

e anteiso 
i e a C14-C18 PLFA Bact. Gram (+) 

 
 

ZELLES (1999) 
 

Anel de 
ciclopropano (cy) 

cy17:0 e cy19:0 PLFA Bact. Gram (-) 
 
 

ZELLES (1999) 

Ramificação metil 
(Me) no carbono 

10 

10Me C15-C18 PLFA Bact. redut. 
SO4

-2 

 
Actnomicetos 

 
 

DOWLING et al. (1986) 
 

KERGER et al.(1986) 

Hidroxila 
substituinte 

OH em C10-C18 PLFA Bact. Gram (-) 
Actinomicetos 

WAKEHAM et al., 
(2003); LEE et al., 

(2004); MIRZA et al., 
(1991) 

Monoinsaturados     
Insaturação no C5 

(ω5) 
16:1ω5 

 
 

PLFA 
 
 

NLFA 

FMA e Bact. 
 
 

FMA 
 

OLSSON et al. (1999); 
SAKAMOTO et al., 

(2004); ZELLES (1997) 
OLSSON et al. (1999); 
MADAN et al.(2002) 

 
Insaturação no C7 

(ω7) 
16:1ω7 

 
 

18:1ω7 

PLFA 
 
 

PLFA 

Amplo Bact. 
 
 

Bact/ FMA 
 

GUCKERT et al. (1991); 
ZELLES(1999) 

 
ZELLES, (1999); 

OLSSON et al., (1999) 
 

Insaturação no C8 
(ω8) 

18:1ω8 
 

16:1ω8 

PLFA 
 

PLFA 

Bact. Metano. 
 

Bact. Metano. 
 

RINGELBERG et al. 
(1989) 

BODELIER et al. (2009) 

Insaturação no C9 
(ω9) 

18:1ω9 
 
 
 
 

20:1ω9 
 

PLFA 
PLFA 

PLFA/NLFANLFA 
 

PLFA 

Fungo geral 
Bact. Gram (-) 

Plantas 
Nematóides 

 
FMA 

Gigaspora 

BÅÅTH (2003) 
ZELLES, (1999) 

RUESS et al. (2007) 
CHEN et al. (2001) 

 
SAKAMOTO et 

al.(2004) 
 

Polinsaturados     
1º insaturação no 

C6 (ω6) 
18:2ω6,9 

 
 
 

18:3ω6,9,12 
 
 

20:4ω6,9,12,15 

PLFA 
 
 

NLFA 
PLFA/NLFA 

PLFA 
 

PLFA/NLFA 

Fungo geral e 
EM 

 
Animais 
Plantas 

Zigomicetos 
 

Amplo animal 
 

FROSTERGARD & 
BÅÅTH, (2001); 
ZELLES (1999) 

 
RUESS et al. (2000) 
RUESS et al. (2007) 
WESTHUIZEN et 

al.(1994) 
 

CHEN et al.(2001) 
PLFA (ácidos graxos derivados de fosfolipídio); NLFA (ácidos graxos derivados de lipídios neutros); FMA 
(fungos micorrízicos arbusculares); EM (fungos ectomicorrízicos);Bact. red. SO4

-2(Bactérias redutoras de 
sulfato).  
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Tabela 2. Características gerais da unidade de referência tecnológica (URT) selecionada 
para a condução do estudo de caso da presente tese. 

Características  URT - Cachoeira Dourada 

   

Localização  Cachoeira Dourada - GO 

   

Tipo de iLPF  Agrosilvipastoril 

   

Ano de implantação  2008 

   

Bioma  Cerrado 

Tipo de Solo  Latossolo Vermelho 

Clima (Köppen)  Aw 

Espécies agrícolas  Milho (Zea mays L); Soja (Glycine max L) 

Espécies forrageiras  Brachiaria brizantha cv Marandú, Piatã 

Espécies florestais  Eucalyptus urograndis 

Bovino  Nelore, mestiços 

Atividades  Carnes; grãos. Mourões, etc 

 

  



9 
 

 
 
 

3. CAPÍTULO I: 

 

 

 

MUCH BEYOND MANTEL: BRINGING PROCRUSTES ANALYSES TO 
THE PLANT AND SOIL ECOLOGIST'S TOOLBOX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Capítulo publicado como: Lisboa, F. J. G.; Peres-Neto, P. R.; Chaer, G. M.; Jesus, E. C.; 
Mitchell, R. J.; Chapman, S. J.; Berbara, R. L. L. Much beyond mantel: bringing Procrustes 
association metric to the plant and soil ecologist’s toolbox. PLoS One, v. 9, e101238, 2014 
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3.1. RESUMO 

A correlação de dados multivariados é uma tarefa comum em investigações no âmbito da 
biologia do solo e da ecologia de maneira geral. A análise Procrustes e o teste de Mantel são 
duas abordagens que comumente atendem a este objetivo, sendo consideradas análogas em 
muitas situações, especialmente quando usadas como uma forma de testar a significância 
estatística da correlação entre duas tabelas de dados multivariados. Aqui, nós chamamos a 
atenção para as vantagens de aplicação de uma das características da análise Procrustes 
pobremente explorada: os resíduos Procrusteanos. Esses resíduos representam diferenças 
entre duas tabelas de dados considerando observações homólogas (por exemplo, pontos 
amostrais), e podem ser explorados no sentido de estimar níveis de associação individuais 
(por exemplo, se alguns grupos de amostras são mais similares do que os outros em termos de 
associação entre tabela de dados microbiológicos e tabela de dados ambientais). Neste artigo, 
usando dados reais e hipotéticos, busca-se familiarizar ecologistas com os benefícios de usar 
as diferencias locais em termos de resíduos procrusteanos no sentido de ganhar indícios sobre 
processos que regulam a associação entre dados multivariados. Uma vez que a informação 
multivariada é transformada em matriz de dissimilaridade/similaridade quando usando o teste 
de Mantel, esse teste não permite que os ecologistas contrastem pontos amostrais homólogos 
ao longo de tabelas multivariadas de interesse, não permitindo a análise de correlação em 
subsequentes abordagens estatísticas clássicas, como ordenação, particionamento da variância 
(regressão), e ANOVA. 

Palavras-chave: Matriz de dados. Tabela de dados. Ordenação. Análise multivariada. 
Microbiologia ambiental. Variação residual. 
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3.2. ABSTRACT 

The correlation of multivariate data is a common task in investigations of soil biology and in 
ecology in general. Procrustes analysis and the Mantel test are two approaches that often meet 
this objective and are considered analogous in many situations especially when used as a 
statistical test to assess the statistical significance between multivariate data tables. Here we 
call attention to ecologists of the advantages of a less familiar application of the Procrustean 
framework, namely Procrustean residuals. These residuals represent differences in fit between 
multivariate data tables regarding homologous observations (e.g., sampling sites) that can be 
used to estimate local levels of association (e.g., some groups of sites are more similar in their 
association between biotic and environmental features than other groups of sites).  In this 
paper, we attempt to familiarize ecologists with the benefits of using these local residual 
differences to further gain insights about the processes underlying the association among 
multivariate data tables using real and hypothetical examples.  Given that in the Mantel 
framework, multivariate information is translated into a pairwise distance matrix, we lose the 
ability to contrast homologous data points across dimensions and data matrices after their fit. 
 
Key-words: Data matrix. Data tables. Ordination. Multivariate analyses. Environmental 
microbiology. Residual variation. 
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3.3. INTRODUCTION 

In multidimensional data analysis, ecologists often encounter situations where they 
need to choose between two or more numerical approaches that are able to tackle the same 
question of interest. The preference between approaches is based, among other factors, on the 
familiarity of the user with the method, which in turn depends on the time a particular method 
has been available in statistical packages and the ease in implementing and interpreting its 
results. Another relevant factor to consider is “literature–induced use” in which renowned 
research groups involved in the development, improvement and generation of statistical 
ecological approaches have a strong influence on the types of statistical approaches other 
ecologists use.  

Determining the strength of the relationships between multivariate datasets is a routine 
analysis when trying to understand the environmental factors driving the composition and 
structure of ecological communities. Two approaches, the Mantel test (Mantel, 1969) and 
Procrustes analysis (Gower, 1971), though considered analogous by the literature in the 
questions they can tackle (Peres-Neto & Jackson, 2001), have not been used to the same 
extent. Despite the advantages of Procrustes analysis over the Mantel test (Peres-Neto & 
Jackson, 2001)  regarding greater statistical power in detecting significant relationships (i.e., 
lower type II errors) and the possibility of analyzing further the patterns of association 
between multivariate matrices (visually and by further statistical analyses), the Procrustean 
approach remains relatively unused in tackling questions regarding the relationships between 
data matrices involving plant and soil information or between soil matrices (Fig. 1).  

The Mantel test and the Procrustes approach can be both used in many similar 
situations where the interest is into assessing how multivariate data matrices are associated 
(correlated), though for unknown reasons they have been used in quite different ways in the 
ecological literature.  For example, while the Mantel test has been often applied when testing 
the relationship between above and below ground data matrices (Tuomisto et al. 2003a; 
Tuomisto et al., 2003b; Tuomisto et al., 2003c; Kang & Mills, 2004;Poulsen et al., 2006; 
Fitzsimons et al., 2008; Powers et al., 2009; Castilho-Monroy et al., 2011; Pomara et al., 
2012), Procrustes analysis has predominantly been used to contrast the results of different 
ecological ordinations on the same data (Artz et al., 2006; Trivedi et al., 2008; Jesus et al., 
2009; Merillä et al., 20010), to compare fingerprinting tools for assessing microbial 
communities (Grayston et al., 2004; Singh et al., 2006; Vinten et al., 2011) and for deciding 
between methodological choices (Hirst & Jackson, 2007; Poos & Jackson, 2012). Indeed the 
Procrustean framework has been rarely used to make inferences about plant and soil 
relationships (Singh et al., 2008; Burk & Irwin, 2009; Lisboa et al., 2012; Landeiro et al., 
2012) and other types of ecological associations between data sets.  There are certainly 
applications in which the Procrustean and Mantel test cannot be easily applied 
interchangeably.  Unlike Mantel, the Procrustean approach can be used when comparing 
multiple data matrices jointly.  Conversely, ecologists are often interested in correlating 
distance (or similarity) matrices rather than testing the association among data matrices in 
their raw form (i.e., not transformed by the property of distance measures).  One particular 
case in the distance-decay of similarity in ecological communities (Nekola & White, 1999) in 
which one is interested in testing the hypothesis that the similarity in community composition 
decreases in relation to linear (or log transformed) geographic distance between communities.  
The differences between raw-based and distance-based approaches have been discussed 
extensively elsewhere (Legendre et al., 2005; Tuomisto & Ruokolainen, 2006). 
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Figure 1.Number (#) of papers published using Mantel and Procrustes for relating data 
matrices from soil or plant studies in the ten years since Peres-Neto & Jackson (2001) 
stated the advantages of Procrustes over the Mantel approach. Data obtained using 
Thompson Reuters database (June, 6, 2013).  We searched for papers using uniquely 
the Mantel approach, uniquely the Procrustes approach and papers using both 
approaches.  The search was based on Procrust* (Procrustean or Procrustes) and 
Protest. 

Despite the relative merits of the Procrustean framework over the Mantel test shown 
by the relatively well-cited paper by Peres-Neto & Jackson (2001), its potential has not yet 
been tapped.  Perhaps the reason for not getting Procrustes analysis to be as popular as the 
Mantel test among ecologists yet is the lack of a paper showing that in many situations 
traditionally investigated by Mantel, the Procrustean analysis can be equally well used. Here, 
we attempt to familiarize ecologists with the use of Procrustes analysis by using real and 
hypothetical examples where the Mantel test tends to be preferred. Most importantly, we 
highlight little explored limits of Procrustes by using its residual vector of association 
between data tables, hereafter referred as to PAM, in three common statistical approaches: 
multivariate ordination, variation partitioning and ANOVA. 

The use of PAM has been quite restricted in the ecological literature.  To our 
knowledge the first study was by Alárcon et al. (2008) who assessed the plant-pollinator 
interaction during three consecutive summers in the southeastern portion of California, USA. 
These authors employed the residual vector (PAM) to identify which pollinating species 
exhibited the greatest deviation between two consecutive years.  Singh et al. (2008) used the 
PAM in a study on soil microbiology to verify the effect of soil pH on the relationship 
between arbuscular mycorrhizal fungi (AMF) and plant assemblages. These authors employed 
the following strategy: 1) Procrustes analysis was applied between the matrices representing 
the AMF community and that representing the plant community; 2) after detecting a 
significant relationship (m12 = 0,28; P < 0,001); 3) then, these authors extracted the PAM and 
used it as a response in a simple regression analysis with the soil pH. It was detected no effect 
of pH on the association between the AMF and plant communities, suggesting that neither the 
environmental nor the identity of the plant species that composed the community affected the 
AMF community. Other applications can be certainly found (e.g., Lisboa et al., 2012, 
Landeiro et al., 2012; Siqueira et al., 2012) but its flexibility and general usage remains 
largely unexplored.   
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3.3.1. Procrustes analysis: a foundation for soil and plant ecologists 

In ancient Greek mythology there was a character named Procrustes who was a 
resident of Eleusis Mountain, a known travelers’ route. As a “good” host, Procrustes always 
invited travelers to spend the night at his home; more specifically, he invited them to lie down 
on his iron bed, which was tailored to fit Procrustes' own body. The guests who did not fit the 
dimensions of his bed either had their limbs cut off or were stretched until their dimensions 
approached those of Procrustes’s bed. Ironically, none of the guests ever fitted the iron bed 
because Procrustes secretly had two beds of different sizes (Kuehnelt-Leddihn, 2007). One 
can easily make a parallel here with ecological data in which data from different sources will 
almost never easily compare or fit to one another.  

Procrustes analysis is based on the search for the best fit between two data tables, 
hereafter referred to as matrices, where one is kept fixed (“Procrustes’ bed” or target matrix), 
while the other (“Procrustes’ guest” or rotated matrix) undergoes a series of transformations 
(translation, mirror reflection and rotation; Gower , 1971) to fit the fixed matrix.  Although in 
this paper we concentrate on fitting two matrices, the extension of Procrustes analysis to 
multiple species is straightforward (Peres-Neto & Jackson, 2001) in which the reference 
matrix can be either one of the original matrices or their averages (or medians).  Hereafter, the 
target matrix (target) will be referred as to X, and the data matrix to be fitted as Y. X and Y 
are both n x p matrices, where n is the number ofrows and p is the number of columns. The 
goal of the transformations in Y is to minimize the residual sum of squared differences 
between the corresponding n dimensions between X and Y; the sum of the squares of these 
residual differences is termed m2(Gower’s statistic), representing the optimal fit between the 
two data matrices, such that the higher the value of m2, the weaker the relationship between 
the two data tables is. The significance of m

2 can be estimated through a permutation test 
(termed Protest after Jackson (2001); see Peres-Neto &Jackson(2001) for further details).  

3.3.2. Procrustean association metric (PAM) 

The least squares superimposition between the corresponding n observations of X and 
Y is one of the main advantages (in addition to the increased statistical power) of the 
Procrustean framework in contrast to the Mantel test. The Procrustes superimposition 
generates a (n x p) matrix of residuals that can be further used to contrast the differences 
between homologous observations (rows) across matrices in the form of a vector (PAM).  
Given that within the Mantel approach differences between observations across all 
dimensions are packed down into a single distances, it cannot be used to assess differences 
across observations across dimensions. Consistent small and large differences across 
homologous observations across matrices in regard to other factors of interest can further 
assist in understanding how X and Y are related. For example, we could use PAM to assess 
the degree of observations matching between a plant function trait matrix and a composition 
matrix and assess whether smaller or greater residuals values are a function of the time 
elapsed since some disturbance event. 

PAM is simply a vector of residual differences between the corresponding n 

observations. For example, assuming that an ecologist wants to correlate two matrices of data 
X and Y, both of which are formed by four rows (i.e. sites, plots, observational units), 
Procrustes analysis will generate four residual differences between the X and Y 
configurations. The compilation of these residual differences between homologous rows 
(observations) across dimensions in the form of a vector – PAM – represents a useful way to 
represent information on the relationship between two matrices and make it available for 
further statistical analysis, both parametric and non-parametric; this feature is not offered by 
the Mantel approach.  
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3.4. ROADMAP FOR APPLYING PAM 

3.4.1. Constructing a practical roadmap for applying PAM 

There are few studies in the ecological literature that have used PAM for analyzing 
relationships between plant and soil datasets. The lack of examples partially explains the low 
popularity of Procrustes analysis among plant and soil ecologists and ecologists in general as 
an alternative tool to the more traditional Mantel test. In order to make the possible uses of 
Procrusteanresiduals more familiar, we will introduce a number of examples in the form of 
schematic roadmaps for applying PAM in association with three common statistical 
approaches: ordination, regression analysis and ANOVA.  All codes for the following 
roadmap can be found out at:  

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0101238 
Plant and soil ecologists must keep in mind that Procrustes analysis requires that the X 

and Y have the same number of rows and columns, though the last dimension is less 
restricting (see below). Given that the data for both matrices usually originate from the same 
sites, it is most common in ecology that only the number of columns (descriptors or variables) 
varies between the two matrices.  Therefore, the question arises of how to make the number of 
columns equal across the two matrices, i.e., how to reduce them to the same dimensionality. 
Although Procrustes analysis can be performed between matrices having different number of 
dimensions (i.e., the fit is based on a singular value decomposition (svd) of XTY, where X and 
Y are scaled prior to svd and T stands for matrix transpose), traditionally the matrix with less 
number of columns (“missing columns”) is made equal in dimension to the larger matrix by 
adding columns of zeros in order to keep (Fig. 2a; Gower, 1971).  Although there are some 
criticisms related to this practice and alternatives have been suggested (ten Berge et al.,1993), 
the addition of zero columns does not affect the distances between columns among 
observations and is a convenient device rather than a hurdle (Dijksterhuis & Gower, 1992).   

Another convenient way to make X and Y have the same number of columns is to 
represent most of the variation in their raw data by matrices formed by the same number of 
orthogonal axes (Fig. 2b; Peres-Neto & Jackson, 2001; ten Berge et al.,1993 Dijksterhuis & 
Gower, 1992), i.e., matrices formed by axes derived through ordination methods such as 
Principal components analysis (PCA), Non-metric Dimensional Scaling (NMDS), 
Correspondence Analysis (CA), Principal Coordinate Analysis (PCoA), the choice being 
dependent on the nature of the data (continuous, presence-absence data, abundance data).  
Moreover, raw data matrices can previously be transformed into ordination axesin order 
tomatch data characteristics(see  Legendre & Gallagher, 2001); or alternatively have pairwise 
distance matrices calculated from the data matrices that are then orthogonolized via PCoA to 
extract ordination axes based on the chosen distance measure (e.g., Bray-Curtis, Jaccard, 
Sorensen, Gower). 

 Here, for simplicity, we use a PCA in all applications.  In cases, where species data 
(presence/absence or abundance) was used, the data was Hellinger-transformed and PCAs 
were extracted on species correlation matrix calculated from the transformed data.  The 
Hellinger transformation alleviates the issue of double-zeros in species data matrix 
transformed into correlation or Euclidean-distance pairwise matrices prior to PCA in which 
sites sharing no species in common can be found to be more similar than sites sharing a 
reduced number of species in common (e.g., the horse shoe effect in ordination plots)(see  
Legendre & Gallagher, 2001).    

The general strategy is as follows:  

a) Subject the raw data matrices to an ordination method (here PCA but see above for 
other strategies);  
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b) After ordinating X and Y, use the same number of ordination axes for both matrices 
(Fig. 2b). 
Given that the higher the number of ordination axes used, the higher is the amount of 

variation explained in X and Y, it would be interesting run the Procrustean analysis 
sequentially using matrices made up of an increasing number of ordination axes. It could help 
ecologists check the consistency of the relationship between X and Y based on different 
numbers of ordination axes, which will give more reliability to the results. 

3.4.2.The use of PAM in ecological ordination 

The first form of PAM shown here is based on ordination methods. Ordination is the 
graphical representation of the variation of objects (sites), descriptors (species/environmental 
parameters) or both, in a reduced space formed by orthogonal axes (Legendre & Legendre, 
2012).  

Three matrices for the soil microbial community were obtained for each site: one 
based on the fatty acid profile of the soil (PLFA analysis), and the other two on the T-RFLP 
analysis of the communities of fungi and bacteria, respectively. The matrixrepresenting the 
soil chemistry  

 

 

 

Figure 2.Roadmap for twoalternative waysto reach the same dimensionality between 
matrices, and so relating it by Procrustes analysis. a) Addition of columns containing 
zeros to the Y raw data matrix for matching the X raw data matrix dimension; b) 
Application of ordination to raw data matrices to make matrices have equal 
dimensionality prior to Procrustes analysis. In the rows, smay stand for sites, plots, 
sampling points, etc. In the columns, var mean variable. 
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was based on the concentrations of Na, K, Ca, Mg, Fe, Al, P, total C, total N in addition to 
pH, loss on ignition and moisture. 

There is some consensus that the variation in vegetation can act as a proxy for changes 
in the soil microbial community, either directly in the case of symbionts, for example, or 
indirectly via changes in soil chemistry itself. We use Procrustes analysis associated with 
ordination techniques to verify potential drivers of the soil microbial community and to 
determine if plant community and soil chemistry are equally related to the microbiological 
variation. The sequence of analysis was as follows: 

a) Ordination analysis: All data matrices (community plant, soil chemistry and soil 
microbial communities) containing the three chronosequences were subjected to 
separate PCAs based on correlation matrix. The community plant was Hellinger-
transformed prior PCA. Then, the first six PCA ordination axes from each matrix were 
retained in order to assemble four PCA matrices representing the variation summarized 
in the first 3, 4, 5 and 6 PCA axes. Thus, four PCA matrices were obtained from each 
dataset: plant community, soil chemistry and soil microbial community (PLFA, 
bacterial and fungal T-RFLP) (Fig. 3a). 

b) Procrustes analysis: The PCA matrices of plant community and soil chemistry were 
used to run Procrustean analyses with the PCA matrices of soil microbial community 
based on PLFA, and fungal and bacterial T-RFLP datasets. 

c) PAM extraction: Since all Procrustean relationships based on PCA matrices with n 
axes were significant, for simplicity, only the PAM obtained from relationships of PCA 
matrices with 6 axes were used for subsequent analyses. Six PAMs were generated: 
PAM1 (soil chemistry on PLFA), PAM2 (soil chemistry on bacteria), PAM3 (soil 
chemistry on fungi), PAM4 (plant on PLFA), PAM5 (plant on bacteria), and PAM6 
(plant on fungi) (Fig. 3c). 

d) PAM ordination: The PAMs were assembled in a single matrix (“effect matrix”) with 
one PAM per row (Fig. 3c). Therefore, the effect matrix compiled the effects of plant 
community and soil chemistry on soil microbial community structure derived from the 
three methods. This effect matrix was submitted to PCA ordination to verify whether 
the plant community effect on soil microbial community structure differed from the 
effect of soil chemistry (Fig. 3c).  

The results showed that for all chronosequences the plant effect on microbial structure 
was divergent in relation to the soil chemistry effect, as suggested by the separation along the 
axis of greatest variation (Fig. 4). Although we cannot apply a proper statistical significance 
test in one-table based ordination methods (PCA, NMDS, PCoA, etc), visual inferences can 
be made. For example the Craggan area exhibited a clear distortion between plant community 
and soil chemistry variation in terms of their effects on the soil microbial community structure 
depicted by PLFA, bacterial T-RFLP and fungal T-RFLP (Fig. 4a). Also in this area, the 
response of the microbial community based on PLFA was distant from the response based on 
molecular data (T-RFLP) (Fig. 4a).They also suggest that the effects of soil chemical 
properties on the microbial communities may be weakly mediated by above ground 
alterations (Lisboa et al., 2012). This example shows the usefulness of Procrustes analysis to 
raise additional evidence in plant and soil ecology studies. 
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Figure3. Roadmap for applying the Procrustes association metric (PAM) in the multivariate 
ordination context using data of Mitchell et al. (2010).a) Assembling matrices with 
different ordination axes, through Procrustes analysis, soil chemistry (SC) and plant 
community with soil microbial community (SMC: PLFA, and bacterial and fungal T-
RFLP); b)Extraction of PAM from Procrustean relationships based on  matrices with 6 
ordination axes; c) Assembling of PAM based PCA matrices with 6 axes as rows in a 
single matrix (“effect matrix”), and using it in an ordination technique (e.g., PCA, 
PCoA, NMDS) to verify if the different effects diverge. In the matrix rows smay stand 
for sites, plots, sampling points, etc. In the Procrustes residual plot theys’sarethes 

scores for the ordination of the Ymatrixand are pointing towards scores for the 
ordination of the X matrix. 

 

 

Figure 4. Results from PCA ordination of the Procrustes association metric matrix (“effect 
matrix”) gathering the interactions of soil chemistry and plant community with soil 
microbial matrices (PLFA, and bacterial and fungal T-RFLP). The filled symbols are 
the Procrustes relationships between soil chemistry and soil microbial matrices, and 
the open symbols between plant community and soil microbial matrices. Data from 
three chronosequences (Craggan, Kerrow and Tulchan) obtained by Mitchell et al. 
(2010). 
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3.4.3. The PAM and regression analysis 

In regression analysis, ‘response’ and ‘predictor’ are common terms. In ecology, 
predictors can have different natures. Space, time, organic matter and moisture, among other 
factors, are some examples of predictors. On the other hand the microbial communities are 
often used as a response variable because they are considered better indicators of a given 
ecosystem. 

Some authors familiar with soil microbial ecology have been using the Mantel test to 
assess the individual contribution of deterministic and stochastic processes on the soil 
microbial structure variation (Dumbrell et al., 2009; Zheng et al., 2013). As an example of the 
utility of the Procrustes analysis in the context of variation partitioning we can take a 
hypothetical scenario with four datasets from a given area, corresponding to soil microbial 
community structure (PLFA), soil microbial functioning (enzyme activities), soil properties 
and spatial variation. Spatial variation can be represented, for example, by 100 sampling 
points generated from a 10 m x 10 m transects. The matrix of geographical coordinates of the 
sampling points can be submitted to PCNM (principal coordinate neighbour matrix) analysis 
generating a matrix of spatial eigenfunctions termed PCNMs (ten Berge et al., 1993). In this 
scenario, we can assume that the ecologist aims to assess the relative contributions of 
individual soil properties (deterministic processes) and spatial variation (stochastic event) on 
the relationship between microbial community structure and soil microbial functioning rather 
than on these components individually. To use the Procrustean association metric (PAM) in 
this context, one can use the following steps: 

a) Ordinate the two matrices (i.e., the soil microbial community and soil microbial 
functioning) via PCA (the soil microbial community matrix was Hellinger-
Transformed) and select a similar number of ordination axes (Fig. 5a).  The 
multivariate scores of the two matrices across the selected number of axes are 
subjected to a Procrustes analysis and a PAM was then calculated.    

b) Use individual PAMs (based on 2, 3 or more PCA axes) as response variable and soil 
properties and spatial variation as independent (predictor) variables in a multiple 
regression framework (Fig. 5b).  

c) Finally, the independent contributions of soil properties (independent of space) and 
unmeasured spatial process and/or factors (spatial variation independent of soil 
properties) to the microbial structure can be estimated via variation partitioning 
(Peres-Neto et al., 2006) and represented by a Venn diagram (Fig. 5c). 

3.4.4. The PAM and analysis of variance 

Although regression and analysis of variance are ultimately the same analysis in which 
the response is either continuous (regression) or ascribed to factors (ANOVA), we provide 
examples for each of them in different sections given that often they are seen as distinct forms 
of analyses. Evaluation of the effects of land use on soil microbial communities has been a 
common case-study issue in soil ecology. Some of these studies have been carried out using 
Mantel approach (Chaer et al., 2008; Peixoto et al., 2010) for doing inferences about land use 
type effects on soil microbial structure e functioning. However , Mantel does not yield a 
vector of structure – functioning  relationship, that is, a continuous variable, able to be 
partitioned by categorical variables like land use types. In the following example we show 
how to use PAM to evaluate the effect of land use type on the relationship between microbial 
community structure and microbial function in the form of PAM. 
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Figure 5.Roadmap forusing Procrustes Association Metric (PAM) in a multiple regression 
analysis framework (variation partitioning). a) Soil microbial community (SMC) and 
soil microbial functioning (SMF) matrices are submitted to an ordination to reach 
same dimensionality, and SMC and SMF matrices formed by 2, 3 and n axes related 
through Procrustes analysis in order to generate PAMs; b) PAMs generated were used 
as response in a variation partitioning to verify the individual contribution of soil 
properties and spatial information (PCNM eigenfunctions) on the SMC-SMF 
relationship; c) Venn diagram depicting the relative contribution of soil properties 
(niche processes [a]) and unmeasured spatial factors (neutral processes [c]).[b] is the 
variation in the response due to join contribution of deterministic and neutral 
processes. In the matrix rows smay stand for sites, plots, sampling points, etc. In the 
Procrustes residual plot the ys’s are the s scores for the ordination of the Ymatrixand 
are pointing towards scores for the ordination of the X matrix. 

 
In a hypothetical scenario, a researcher is interested in studying whether four different 

land use types within the Amazon biome are affecting the relationship between microbial 
structure and microbial functioning. In each of the land uses (original forest fragment, 
silvipastoral system, improved pasture, and unimproved pasture) six plots (10 m x 10 m) were 
established and one composite soil sample (0-10 cm) collected per plot (Fig. 6a). The X 
dataset (soil microbial structure) was represented by PLFA data, and the Y dataset 
(microbialfunctioning) by the abundance of genes associated with microorganisms involved 
in greenhouse gas emission processes, such as nitrifiers, denitrifiers and methanotrophic 
organisms. The researcher’s hypothesis is that in the forest fragment (non-altered 
environment) there is a better matching between microbial structure and microbial function. 
Thus, in anthropogenically disturbed environments (silvipastoral system, improved pasture, 
and unimproved pasture) the change in microbial structure relative to the original (forest) is 
not followed by a change in the microbial functioning to the same magnitude. This hypothesis 
can be tested using an integration of Procrustes analysis and ANOVA through the following 
steps: 

a) Reduce the datasets X (soil microbial structure) and Y (soil microbial functioning) to 
similar dimensions using PCA. Then, run the Procrustean analysis between the PCA 
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matrix of the soil microbial community structure and the PCA matrix of soil microbial 
functioning and extract the PAM (Fig. 6a). 

b) Run an ANOVA with land use type as fixed factor and the PAM as the response 
variable (Fig. 6b). 

c) If the F value of ANOVA is significant, a means test can be performed to compare the 
mean PAMs of the land use types (Fig. 6c). 

3.5. DISCUSSION 

In this paper we have attempted to show the advantages of the Procrustean analysis 
over the Mantel test, in which the former can be used for gaining further information on 
underlying drivers of data table associations.  We concentrated on the advantage of that 
patterns of concordance between data matrices can be displayed and individual observations 
contrasted separately using the Procrustean framework, allowing further examination of the 
common and different association patterns among multiple data matrices.  Given that in the 
Mantel framework, multivariate information is translated into a pairwise distance matrix, 
welose the ability to contrast homologous data points across dimensions and data matrices.  It 
is important to notice that it was not our goal to show the statistical advantages of Procrustes 
over Mantel as done by previous work (Peres-Neto & Jackson, 2001). Instead, we 
concentrated on generating different analytical schemes, especially for plant and soil 
ecologists, to incorporate Procustes in their statistical toolbox. 

 

Figure 6.Roadmap for using Procrustes association metric (PAM) in an ANOVA context. a) 
PCA ordination of each SMC and SMF raw data matrices, and then Procrustes 
correlation from 2 axes-based PCA matrices in order to generate the PAM depicting 
the SMC-SMF relationship.b) Table showing results of a One-way ANOVA for using 
PAM as response and land use type as fixed factor. c) Multiple comparisons test 
(Tukey, 95%) for means of the Procrustean relationship between soil microbial 
structure and functioning (PAM in 2 axes) across land use types. 

What is unique about Procrustean framework?  There are at least four characteristics 
of the approach not shared by others. First, because the approach is correlative rather than 
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regressive, the number of observations (e.g., sites) in the matrices does not have to be greater 
than the number of columns as in common regression approaches such as RDA and CCA.  
Second, we can fit as many matrices as we have available; this latter issue is particularly 
restrictive under a regression approach given the limitation of number of rows versus number 
of columns.  Moreover, all matrices are treated in equal footing as no matrix is treated as 
response or predictor.  Third, the relationships within (only across) matrix columns do not 
affect the analysis.  Fourth, residual values across observations and dimensions can be 
calculated as explored as shown here.  These characteristics should not be necessarily seen as 
advantages per se over other methods but rather features that are unique and may be useful in 
many situations.  There are certainly other tools that can be used to look at the associations 
between data sets. RDA and CCA are well-established tools in ecology and are based on 
regression (asymmetric) methods.  It has been long-standing these approaches may be more 
appropriate for application to the examples given in this paper, since they establish relations 
of cause and effect. However, because these analyses include a regression step, they are 
limited to situations where the number of rows (sites) in the environmental matrix X is higher 
than the number of columns (variables) (Dray et al., 2006; Thioulouse et al, 2004). This is not 
a limitation in Procrustes analysis and moreover, it is not clear how residual variation among 
homologous observations across dimensions should be explored in the case of RDA and 
CCA. 

At least two other symmetric approaches are similar to the Procrustean approach, 
namely Co-inertia analysis (Dolédec & Chessel, 1994), and symmetric Co-correspondence 
analysis (Ter Braak & Schaffers, 2004) a form of Co-inertia analysis in which a 
correspondence analysis is applied to two species matrices prior to the analysis. The main 
difference resides in the fact that fit is influenced by all variables pairs in Co-inertia analysis 
(within and between matrices), whereas fit is influenced only by variation between matrices in 
Procrustean.  Co-inertia is always based on ordination within data matrices, whereas in 
Procrustes either the raw data or their ordination axes can be used.  Co-inertia can also take 
into account row (e.g., sites) and column (e.g., species) weights in the analysis, though the 
standardization and fit processes in Procrustean analysis could also take these into account 
(Dray et al., 2003).  Co-inertia and Procrustean analysis are certainly related in the sense that 
they both treat matrices as symmetrically during the fitting process, though more studies are 
necessary to assess which conditions (e.g., correlation within and across matrices, differences 
in dimensionality between matrices, outliers within and across matrices) they differ.  Finally 
Dray et al. (2003) showed the advantages or merging Co-inertia and Procrustean analysis, 
whereas the latter is used as a precursor of the former.  In reality, future studies are required to 
contrast the Co-inertia and Procrustean analysis, but in either form of analyses we can 
produce residual vectors (PAM) that can be further analyzed.   

Procrustes can be perhaps best justified when the number of predictors is greater than 
the number of observations or when X and Y matrices are equally applicable as explanatory 
and response variables. In plant-soil ecology, for example, above- and below-ground data 
matrices can be interchanged as explanatory and response variables. Plant community 
variation has been shown to be related to variation in below-ground compartments (Lisboa et 
al., 2012). In addition, soil components such as fertility and the microbial community have 
been proven to influence aspects of vegetation (van der Heijden et al., 1998). Thus, with the 
literature showing that both types of datasets under analysis can structure each other, the use 
of Procrustes analysis, as a symmetric canonical analysis method, should be encouraged 
among plant and soil ecologists and ecologists in general.  We hope that this paper have 
provided enough examples of the potential for using the Procrustes framework as a precursor 
to further explore ecological data. 
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4.1. RESUMO 

É global a preocupação em adotar medidas para mitigar a degradação de terra causada pelos 
sistemas de produção agrícola. Uma das estratégias propostas é a substituição de pastagens 
degradadas por tipo de uso da terra o qual integra três diferentes tipos de uso da terra: 
agricultura, pecuária, e floresta plantada, coletivamente chamados de iLPF. Contudo, pouco é 
conhecido sobre as diferenças entre os iLPF e outros tipos de uso da terra em termos de 
estrutura da comunidade microbiana do solo. Por meio do uso da métrica de associação 
Procrusteana em ANOVA foi investigado como o tamanho dos resíduos procrusteanos, 
representando a força de correlação entre variáveis individuais de solo e variáveis individuais 
de estrutura microbiana, eram particionados em termos de tipo de uso da terra (iLPF; 
pastagem degradada, pastagem melhorada, fragmento de vegetação nativa), e em termos de 
posição da amostra de solo dentro do sistema iLPF (área sob maior atuação de árvores, área  
de maior influência da pastagem, área de transição entre influência de árvores e de influência 
da pastagem). Foram obtidos indícios de que de fato o tipo de uso da terra pode influenciar 
mais do que propriedades químicas e variáveis microbiológicas individuais. O sistema ILPF 
promoveu a dominância de fungos em ambiente de baixo pH e fertilidade. A disponibilidade 
de P e a variável composta formada por bases trocáveis (Ca+2, Mg+2, K+) foram as 
propriedades do solo cuja as correlações com variáveis de estrutura microbiana  foram mais 
influenciadas pelo tipo de uso da terra e pela posição da amostra dentro do sistema iLPF. 
Enquanto a for a de correlação entre variáveis de estrutura microbiana e a disponibilidade de 
P foi dependente do tipo de uso da terra, a resposta da estrutura microbiana às bases trocáveis 
foi principalmente afetada pela posição da amostra de solo dentro do iLPF. No geral, os 
resultados apontam que a heterogeneidade vegetal introduzida por meio do plantio de árvores 
em meio a pastagem dentro dos sistemas iLPF é um importante regulador das respostas da 
comunidade microbiana às mudança ambientais, e pode ser uma das formas de aumentar a 
sustentabilidade em agroecosistemas tropicais. 
 

Palavras-chave: Manejo. Agroecosistemas. Relacionamento. Métrica de associação 
Procrusteana. 
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4.2. ABSTRACT 

It is of global concern to adopt measures to mitigate land degradation caused by agricultural 
production systems. One of the strategies proposed is to replace degraded pastures with 
agrosilvopastoral systems which integrate three different land-use types: crop production, 
livestock pasture and forestry plantation (denoted iCLF). However, little is known about the 
differences between iCLF and other land use types interms of soil microbial community 
structure. Distance matrices based on individual soil chemical properties and individual soil 
microbial variables were correlated by Procrustes analysis and these relationships yielded 
vectors of residuals depicting these correlations (matches). These vectors were used as 
univariate response variables in an ANOVA framework in order to investigate how the match 
sizes (the strength of correlation/covariance) between individual soil chemical properties and 
individual soil microbial variables vary across land use types (levels: iCLF; degradated 
pasture; improved pasture; and anative cerrado fragment) and also across sample origin within 
iCLF (levels: soil samples under more influence of the exotic tree forest stand; soil samples 
under influence of the pasture; samples within the transition between the forest stand and the 
pasture). We were able to obtain insights into the fact that the land use distinction can be 
driven by more than just individual soil chemical and microbial variables. The integration of 
crop, livestock and forestry promoted a dominance of fungi in this low fertility and low pH 
environment. P availability and the composite variable exchangeable base cations (Ca+2, 
Mg+2, K+) were the soil properties whose strengths of correlation (match sizes) with 
individual microbial variables were the most affected by land use type and sampling origin 
within iCLF. While the strength of the correlation between soil microbial structure variables 
and P availability was typically land use type dependent, the response of the microbial 
structure to exchangeable base cations was mainly affected by the sample origin within iCLF. 
Finally we concluded that increases in the heterogeneity of vegetation within integrated crop, 
pasture and forestry systems are an important driver of microbial community response to 
environmental changes, and may be one means by which to increase the sustainability of 
tropical agroecosystems. 
 
Keywords: Management. Tree-basedsystems. Agroecosystems. Relationships. Procrustes 
association metric 
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4.3. INTRODUCTION 

Global concern with farmland degradation, usually associated with soil carbon loss, 
has led numerous countries to seek management strategies aimed at the restoration and 
sustainable use of such areas. In Brazil, special attention is being paid to integrated crop-
livestock-forest systems (iCLFs) for replacing pastures in different stages of degradation. 
Approximately 12% of the Earth's land surface is covered by agricultural crops, 33% is 
intended for livestock, and 15% supports exotic forest species (Giraldo et al., 2011). Pastures 
accumulate large quantities of carbon in the topsoil layers due to the profusion of fine roots 
from grasses but produce relatively less recalcitrant substrates compared to forest systems. 
This favors organic matter mineralization by stimulating a microbial structure with a higher 
activity (Bardgett and McAlister, 1999), consequently inducing higher soil carbon losses 
(Millard and Singh, 2009). A recent study showed that vegetation homogenization generated 
by converting natural forests into pastures may be accompanied by homogenization of the 
microbial communities (Rodrigues et al., 2013), most likely due to a reduced diversity of 
good quality substrates per soil volume (Lamb et al., 2010). In contrast, the introduction of 
tree species may promote microbial diversity when converting pastures into exotic species 
forests (Carson et al., 2010).  

It is believed that changes in microbial community structure generated by modified 
land management and land use type can be related to the soil switching from carbon source to 
carbon sink or vice versa. Still, it is suggested that land use types considered to be more 
conservative regarding organic matter mineralization tend to exhibit a microbial structure with 
lower activity (Bardgett and McAlister, 1999). Within this formulation, iCLF systems, which 
combine crop production, managed pasture and forest species, are designed to exhibit a 
microbial structure distinct from that of degraded pastures via plant physiological 
heterogenization of the landscape. However, soil microbial community structure is rarely 
investigated in essentially agrosilvopastoral systems such as iCLF systems, especially in the 
tropics (Lacombe et al., 2009; Vallejo et al., 2012). Thus, we do not have a large body of 
evidence that iCLF systems may be more carbon conservative. 

Changes that occur in vegetation composition and management type due to land use 
type conversion are responsible for most of the variation that occurs in chemical and physical 
soil properties. In turn, these changes tend to correlate with variation in the microbial 
community, linking the changes above and below the soil surface (Lisboa et al., 2012; 
Mitchell et al., 2010). However, the extent to which this link between soil chemical variables 
and the phenotypic structure of the microbial community is partitioned among different land 
use types, as well as how the man-generated plant heterogeneity introduced by the forest 
component in the integrated crop-livestock-forest (iCLF) is able to differentiate it from others 
land use types, remain unaddressed questions. 

In this study, we started with the hypothesis that introducing iCLF as replacements for 
degraded pastures leads to a change in the response of phenotypic composition of the soil 
microbial community to individual soil chemical variables. First we accessed the individual 
responses of soil and microbial phenotypic variables to land use type in three different 
scenarios: 1) considering all samples in the iCLF, 2) considering only samples from the centre 
of the pasture component of the iCLF; 3) considering only samples from the forest stand 
within the iCLF. For the main point in this study, i. e. how the matches/effects of individual 
soil chemical variables on the individual  microbial variables are partitioned by land use type 
and sampling origin within iCLF we used features from an uncommon statistical approach in 
soil microbial ecology studies called Procrustes analysis (Gower, 1971). Similar to the 
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somewhat traditional Mantel test, Procrustes analysis is a correlative multivariate approach. 
However the correlation in Procrustes analysis is reached through rotation and translation, 
seeking for the “best” fit that depicts the minimal residual difference between homologues 
coordinates of two or more matrices under analysis (Peres-Neto and Jackson, 2001, Lisboa et 
al.,2014). These homologues coordinates are nothing but the rows (sites, samples) of the 
matrices under analysis so that low residuals stand for strong matches/effects whereas high 
residual differences mean weak matches/effects. Procrustes has the feature of providing the 
matches among all homologues coordinates of matrices under analysis in a vectored form 
sometimes called Procrustean associated metric (Lisboa et al., 2014). Thus this vector can be 
retained for using in downstream statistical approaches in order to investigate the 
consistencies in the size of the matches across different environmental predictors. In the 
present study we investigated the consistency in size matches from Procrustean association 
metric between distance matrices based on individual soil chemical variables and soil 
microbial variables in an ANOVA framework having the land use type as factor (first 
ANOVA) and sample origin within iCLF as factor (second ANOVA). 
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4.4. MATERIALS AND METHODS 

4.4.1. Study area 

The study was conducted in one of the 203 technology reference units in iCFL 
(http://www.cnpgl.embrapa.br/nova/silpf) of the Brazilian Agricultural Research Corporation 
(Empresa Brasileira de Pesquisa Agropecuária - Embrapa) on the Boa Vereda farm located in 
the municipality of Cachoeira Dourada, Goiás State, Brazil. The study site is located at 
18°27’43.19”S, 49°35’58.53”W at an altitude of 484 m above sea level, on a clay (603 g kg-1) 
Rhodic Ferralsol (Latossolo Vermelho Acriférrico típico (Brazilian Soil Classification 
System) or Anionic Acrustox (Soil Taxonomy)) with slopes between 0 and 15% and a mean 
annual rainfall of 1,350 mm (Brasil, 1983). Four land-use types were assessed in this study 
(Fig. 1):1) an iCLF system; 2) improved pasture with remnants of dry forest natural 
vegetation (native trees); 3) degraded pasture; and 4) a native cerrado fragment (savannah-
like) exhibiting ‘cerrado denso’ (dense tree savannah) vegetation. 

 

Figure 1. Land use types investigated in this study. iCLF: integrated crop-livestock-forest 
system; Native fragment: native cerrado (savannah – like) fragment. 

4.4.2. History of land use types 

Originally, all of the sites studied were covered with ‘cerrado’ vegetation, within 
which they represented forest formations of dry forest, ‘cerradão’ (woodland), and ‘cerrado 
denso’. All of the areas, except original forest, had been deforested for more than 30 years and 
were maintained as pasture until recently. 

iCLF: In 2009, the iCLF system was implemented with three rows of eucalyptus trees 
per stand, using 476 trees per hectare (ha), in a total area of 14.7 ha with the following 
management sequence: in August, the soil was plowed with a disc harrow at a cutting depth 
of 25 cm, and lime was incorporated into the soil. Between October and November, the soil 
was prepared for planting soybean (Glycine max L. variety BRSGO 8360) and eucalyptus 
(Eucalyptus urograndis) with a leveling disc harrow. In October 2010, the soil was prepared 
again for planting corn (Zea mays L.) intercropped with brachiaria grass (Urochloa 

brizantha). After harvesting the corn, the soil was not mechanically turned anymore, and the 
brachiaria grass developed into pasture between the eucalyptus rows. The soybean crop 
received 300 kg ha-1 04-30-10 (NPK) + Zn formula fertilizer, the corn received 300 kg ha-108-
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30-10 + Zn and the eucalyptus crop received 150 and 10 g plant-1 of 08-30-10 + Zn and boric 
acid, respectively. As maintenance fertilizer, the eucalyptus received 200 kg of simple 
superphosphate broadcasted and 15 g boric acid, and the pasture between the eucalyptus rows 
received 100 kg urea ha-1 and 100 kg ha-1 monoammonium phosphate annually. 

Improved pasture: Before the pasture was restored, it was in a situation of 
abandonment. In 2008, the site was restored, starting with a disc harrow. Then, lime was 
applied and incorporated into the soil with a leveling harrow, followed by planting Brachiaria 
grass that continues to grow on the site. 

Degraded pasture: This land use type occupies an area of 10.6 ha and comprises 
kikuyu grass (Pennisetum clandestinum) and Surinam grass (Urochloa decumbens). Lime and 
fertilizer were never applied. 

4.4.3. Sampling design 

The samples were collected in March 2012. Five sample modules were established 
within each land use type 50 m apart from each other diagonally. Except for native cerrado 
fragment (NF), where eight samples were collected without using sample modules, three 
sampling points comprising six cores taken randomly (5 x 5 cm) were collected from each 
sample module within DP, IP and iCLF. Thus, the total number of samples for each land use 
type was 15 (DP, IP and iCLF) and 8 (NF), which gave a sample size of 53. Specifically for 
the man-generated plant heterogeneity created after the introduction of exotic tree species 
stands (E. urograndis), within the pasture (main feature of iCLF), each sample within a given 
sample module was coming from a different origin. Here, a sample origin designation similar 
to that employed by Vallejo et al. (2012) was used; the sampling points taken within the tree 
component of the iCLF system were named canopy, the sampling points taken from the 
crown projection were named transition, and finally, the sampling points taken from the 
center of the pasture component of the iCLF system were named outside. So, the total 15 
samples within iCLF could be divided according to the origin: canopy (5), transition (5) and 
outside (5). 

4.4.4. Soil variables analysis 

Soil pH was determined in water and potassium chloride (KCl) using potentiometry 
(Thomas, 1996). Phosphorus (P, mg dm-3), calcium (Ca2+, mmolc dm-3), magnesium (Mg2+, 
mmolc dm-3) and potassium (K+, mg dm-3) were extracted by a dilute solution of strong acids 
(0.05 mol L-1 HCl + 0.0125 mol L-1 H2SO4; Mehlich I) as described by Kuo (1996). 
Phosphorus was determined by the colorimetric method (Embrapa, 2009), Ca2+ and Mg2+ by 
atomic spectroscopy and K+ by flame emission spectrometry (Wright and Stuczynski, 1996). 
Soil organic matter (SOM, mg g-1) was determined by the Walkley-Black method (Nelson and 
Sommers, 1996) without external heating, using sulfuric acid (H2SO4) to create internal heat 
for the reaction. Soil moisture was determined gravimetrically (mg g-1) and soil bulk density 
(g cm-3) using the short (5 cm) core method (Grossman and Reinsch, 2002). 

4.4.5. Microbial analysis 

Phospholipid fatty acid (PLFA) analysis was used to assess the changes in the 
phenotypic structure of the microbial community because this method has been shown to be 
effective in discriminating changes in land-use type (Cao et al., 2010; Diedhiou et al., 2009; 
Kasel et al., 2008). Despite its low resolution, this approach has the advantage of allowing for 
quantification of different and important microbial groups and indices related to soil function, 
such as fungi and bacteria (Frostegård et al., 2011; Wixon and Balser, 2013). To obtain the 
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lipid profile of the soil microbial communities, we followed the method described by 
Fernandes et al. (2011).  

The fatty acid methyl esters (FAMEs) were separated by a gas chromatograph with 
flame-ionization detector (Clarum 500, PerkinElmer) using a capillary column (5% biphenyl-
95% dimethylpolysiloxane, 25 to 30 m) with the following program: 5ºC/minute, from 120 to 
270ºC. The injector and detector temperatures were 250ºC and 280ºC, respectively. The 
chromatogram peaks for each sample were identified by comparing the retention times 
generated by commercial standards (FAME 37 47885-U and BAME 24 47080-U Sigma-
Aldrich).  

The area of each peak within the sample was calculated relative to the total area of the 
chromatogram for obtaining the percentage of FAME within each sample (Fernandes et al., 
2011). Twenty informative peaks were common for all samples and then used in the analyses, 
the results being expressed in percentage mol (row matrix normalization of raw values). The 
profile of all of the FAMEs (20 in total) was used as a surrogate phenotypic structure of the 
microbial community. Within the total profile different markers were pooled in order to 
obtain proxies for the following microbial groups. Gram (+) bacteria (i15:0, a15:0, 15:0, 
i16:0, a16:0, i17:0, a17:0, 17:0) ; Gram (-) bacteria (16:1ω7c, 18:1ω7c, 18:1ω9c, cy17:0, and 
cy19:0) ; bacteria ( Gram (+)  plus Gram (-)) fungi (18:2ω6,9); arbuscular mycorrhizal fungi-
AMF (16:1ω5c); and actinomycetes (10Me17:0, 10Me16:0). The fungi: bacteria ratio (F:B 
ratio) was obtained by dividing the percentage mol of the 18:2ω6,9 FAME by the sum of the 
percentage mol of the bacterial FAMEs. The ratios between FAMEs cy17:0 and cy19:0 and 
their respective FAME precursors, 16:1ω7c and 18:1ω7c, were used to measure microbial 
stress (Frostegård et al., 1993; Olsson, 1999; Zelles, 1999). 

4.4.6. Data analysis 

All of the analyses were conducted using packages available for the R statistical 
program (R Core Development Team, 2013). For an initial analysis of the effect of the 
different land-use types on the overall phenotypic variation of the microbial community, the 
FAMEs profile (percentage mol) was subjected to PERMANOVA (Anderson, 2001). To 
evaluate whether the differences in microbial structure remained consistent across samples 
from different sampling points of the iCLF system, we conducted three distinct 
PERMANOVA´s: 1) considering all of the samples, independent of their origin within the 
iCLF; 2) only considering the samples from the center of the pasture within the iCLF 
(outside); and 3) only considering the samples obtained in the tree stand within the iCLF 
(canopy). PERMANOVA was conducted using the adonis() function of the vegan package 
(Oksanen et al., 2013). 

We used between-group analysis (BGA) to assess visually and statistically the 
differences (or similarities) in microbial structure across land-use types and the potentially 
predominant microbial groups. Like a discriminant analysis, BGA uses scores from ordination 
methods as response variables and a factor with different levels as a categorical variable 
searching for the best combination of variables that allows the scores of the ordination axes to 
maximize the relationship for within- and between-level variation. In this study the scores 
were coming from a PCA based on a matrix of microbial groups and indices whereas the 
factor was the land use type (DP, IP, NF and iCLF) (Thioulouse et al., 2012). Similar to 
PERMANOVA, three distinct comparisons among land types using BGA were conducted 
based on the sample origin within iCLF: 1) considering the samples within the iCLF system; 
2) only samples from exotic tree stands within iCLF (canopy); 3) only samples from the 
pasture within iCLF (outside). The BGA analyses were conducted using the bca() function 
and the overall statistical difference among land use types was accessed by permutations 
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using randtest.between(). These functions are available in the ade4 package (Chessel et al., 
2004). Final BGA plots were customized using Microsoft PowerPoint. 

To test whether the correlations between the individual soil variables and the microbial 
groups and indices differ as a function of land use type, we utilized the following procedure. 
First, individual soil variables — except for exchangeable base cations (Ca2+, Mg2+ and K+), 
as the sum of those was considered (EBC) — and each of the different microbial groups and 
indices based on percentage mol FAMEs were log(x + 1)-transformed and used to construct 
dissimilarity matrices (Euclidean). In the second step, each microbial distance matrix was 
related to each matrix of the individual soil variables to answer to the general question of 
whether the environmental distances based on individual soil variables are significantly 
related to the environmental distances based on different microbial groups and indices. Two 
analogous approaches were used: the partial Mantel test (Legendre and Legendre, 2012) and 
the partial PROTEST (Peres-Neto and Jackson, 2001), where both isolated the effect of the all 
other soil covariates before conducting the relationship analysis. Finally, since PROTEST 
(Procrustes analysis) has the feature of providing the relationship between matrices in a 
vectored form (Peres-Neto and Jackson, 2001)  we used the vectors from significant results of 
the partial PROTEST in two different a one-way ANOVAs. Thus, the vectors representing 
significant relationships between the distance matrices based on the individual variables and 
the distance matrices of the microbial groups and indices were used as the response in two 
different ANOVAs, the first one by using land use type as factor (DP, IP, NF and iCLF). 
Finally, the vectors that were significantly affected in the ANOVAs were subjected to a test of 
means (least significant differences - LSD, 95% confidence, with Bonferroni correction) to 
assess how the magnitude of the effects (matches) of the soil variables on microbial structure 
varies between the land-use types. 

The same approach described in the paragraph above was followed within the iCLF 
system, i.e., the significant relationships were subjected to ANOVA, but now with sample 
position in the iCFL (canopy, transition, outside) as a factor. Thus, one can assess if the 
heterogeneity generated by introducing exotic tree species into the pasture is able to affect the 
extent to which different soil variables influence microbial structure. The partial Mantel test 
and partial PROTEST were conducted using the vegan package (Oksanen, 2013), whereas the 
test of means was conducted using the agricolae package in R (Mendiburu, 2014). 
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4.5. RESULTS 

4.5.1. Individual soil variable correlations 

The correlation plots between individual soil variables showed that the use of samples 
from different origins within the iCLF may be influential. By using as rule of thumb the value 
0.50, the general trend was that in the scenarios using all and only samples from the planted 
tree stands the correlations were positive and relatively strong, particularly between soil 
variables K, Ca and Mg and between these and pH (Fig. 2ab). On other hand, the use of 
samples coming from the centre of the pasture within iCLF gave more negatively and 
moderately strong relationships, particularly the correlation of moisture and bulk density with 
the exchangeable base cations such as K, Ca and Mg (Fig 2abc).The pH was positively 
correlated with all exchangeable base cations across all sampling origin scenarios (Fig. 2abc). 
Moreover it is relevant to highlight that within the exchangable base cations the correlations 
were positive from moderately to strong across the three sampling origin scenarios 
investigated (Fig. 2abc), which justifies the use of the composite variable EBC. The soil 
organic matter related weakly with other soil variables across all the different scenarios (Fig 
2abc). 

4.5.2. Land use ordination based on soil variables 

The principal component ordination based on soil variables was done to give an 
intuitive picture of general differences among land use type across the different scenarios of 
sampling origin within the iCLF.  Across all scenarios the overall trend was the grouping of 
iCLF and degradated pasture (DP) and their distance from the improved pasture (IP) and 
native fragment (NF) (Fig. 3abc). This general pattern seemed to be mainly driven by the 
contrasts in terms of the variable bulk density, which was higher in iCLF and DP than in the 
IP and NF (Fig. 3abc). In the first two scenarios of sampling origin within iCLF (all samples 
and canopy) the land use types iCLF, DP and IP showed to have low soil fertility when 
compared to NF (Fig. 3ab). However when only samples from the centre of the pasture within 
the iCLF (outside) were considered the IP had higher fertility than iCLF and DP (Fig. 3c). It 
is important to notice that only soil variables related significantly (P<0.05) with ordination 
axes are showed. Thus, SOM did not have a great contribution for the land use type 
discrimination as it was not related to the axes across all scenarios investigated. 

4.5.3. Individual variables - based pairwise dissimilarity as affected by land use and 
position sampling within iCLF (PERMANOVA) 

With the exception of the Gram (+) bacterial profile, the PERMANOVA indicated 
significant differences between the land-use types for all of the microbial groups and indices 
when considering all of the samples of the iCLF system (Table 1). Gram (+) bacteria, Gram (-
) bacteria, actinomycetes, and the cy19/18:1ω7 ratio were unable to differentiate the land-use 
types when the samples from the forest component (canopy) were considered (Table 1). 
However, when the pasture replicates were considered (outside), the land-use types differed 
based on the Gram (-) bacterial profile (F=3.629;P< 0.05). Additionally, the land-use types 
were significantly different regarding the 16:1ω5c marker for AMF only when 
PERMANOVA considered all of the samples (F=6.701; P < 0.01) and those from the forest 
component of the iCLF (F=4.157; P < 0.05). Interestingly, the land-use types remained 
distinct for the general microbial, bacterial, and fungal profiles and for the F:B and 
cy17:0/16:1ω7c ratios, regardless of microbial sample position (Table 1). 
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Figure 2.General view of the Soil variables correlation in three scenarios of sample origin 
within the integrated crop-livestock-forest (iCLF): a) all samples within iCLF; b) only 
canopy samples; c) only outside samples). Weakness of number colors stands for 
relationship magnitude while the color type informs on the nature of the relationship: 
more blue (positive), more red (negative). Since the primary objective is to visualize 
the magnitude of relationships and patterns the significance is not shown.  SOM (soil 
organic matter); Bulk dens. (bulk density). All variables were log transformed before 
correlation analysis.  

 
Figure3. PCA based on soil variables. Three scenarios were used: a) PCA by using all 

Samples within iCLF; b) PCA by using five samples coming from planting tree line 
within iCLF (canopy); c) PCA by using samples from the centre of the pasture within 
the iCLF (outside). Here the centroids of each land use type (iCLF: integration crop-
livestock-forest; DP: degradated pasture; IP: improved pasture; NF: native cerrado 
fragment) have been shown in order to get a more clear representation in a reduced 
space. Arrows are soil variables that are significantly related to PCA axes (P<0.05). 
BD (bulk density). 

Regarding the soil variables, pH (H2O and KCl), available phosphorus (P), and soil organic 
matter, these variables were unable to discriminate the land-use types across all scenarios of 
sampling within iCLF (Table 1). In contrast, moisture, bulk density, and exchangeable based 
cations were able to differentiate the land-use types regardless of the samples’ position within 
iCLF system (Table 1). 
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4.5.4. Between group analyses based on microbial variables across different sampling 
scenarios 

The PCA generated to run the BGA was based on a matrix of microbial groups and 
indices.  The BGA permutations reinforced the PERMANOVA results for soil microbial 
variables by showing that overall differences among land use types were not random. This 
was valid for all of the samples (observed value: 0.44;P< 0.001); the canopy samples 
(observed value: 0.53; P< 0.001); and the samples outside of the canopy (observed value: 
0.49;P< 0.001).   

Overall the BGA shows that across all scenarios of sampling origin within iCLF  there 
was a trend of grouping iCLF and IP contrasting with other land use types (DP and NF) (Fig. 
4a-c). Moreover, the distinction of iCLF and IP from DP and NF seems to be driven by 
contrasts between Fungal and Bacterial variables along the highest variation axis (Fig. 4abc). 

4.5.5. The access and significance of the Partial Protest matches 

Despite partial PROTEST to be the ground of the present study we have ran partial 
Mantel just like a “devil’s lawyer” in order to check for consistency of the effect of individual 
soil variables on microbial variables. Thus, we did not intent to make formal comparisons 
between these two approaches since it has been done elsewhere. Considering the results of the 
partial PROTEST, overall microbial structure profile (PLFA), overall bacterial profile, Gram 
(-) bacteria, fungi, F:B and cy19:0/18:1ω7c ratios were affected by all of the soil variables 
included in the study (Table 2). It is worthwhile to notice that the exchangeable base cations 
composite variable (EBC) was the unique to show consistent significant effect on microbial 
community and indices throughout both partial Mantel and partial Procrustes (Table 2). In 
general, the matches of the 18:2ω6,9 FAME (fungi) and the F:B ratio to soil variables were 
similar. 

 

Figure 4. Between Group Analysis(BGA, Thioulouse et al., 2012) using scores from  a PCA 
based on a matrix of microbial groups and indices as response. Land use type was the 
explanatory categorical variable where each level is represented by the centroid. 
Arrows stand for microbial variables as in a biplot (no P cutoff used). Figure a) shows 
the BGA results considering all samples in the integrated crop-livestock-forest land 
use (iCLF); b) accounts for BGA using only samples from the center of the pasture 
within iCLF (outside); c) illustrates the BGA analysis conducted with only samples 
from the base of tree stands within iCLF (canopy). The full circles represent the 
centroid of the land use types: iCLF; IP (improved pasture); DP (degraded pasture); 
NF (native cerrado fragment); Actin. (Actinomycetes); AMF (arbuscular mycorrhizal 
fungi); Bacterial (Gram (+) + Gram(-)); F:B (Fungal:Bacterial ratio).Filled bars 
indicate the variation explained by the first two principal axes. 
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Table 1.PERMANOVA.Analyses using microbial groups and indices (%mol FAMEs) and 
individual soil variables as responses and land-use type as a categorical predictor (4 
levels∆). 

  
Samples 

(All)1  
Samples 

(Canopy)2  
Samples 

(Outside)3 

  F P  F P  F P 

PLFA variables          

          

PLFA profile  14.57 ***  6.368 ***  8.387 *** 
Gram(+)  2.847 ns  0.730 ns  2.701 ns 
Gram (-)  5.576 ***  2.448 ns  3.629 * 
Bacterial  30.58 ***  15.23 ***  13.65 *** 
Fungal  32.12 ***  15.87 ***  12.66 *** 

Actinomycetes  8.465 **  2.839 ns  3.177 ns 
AMF  6.709 **  4.157 *  1.173 ns 

F:B ratio  32.82 ***  16.47 ***  12.01 *** 
cy17/16:1ω7  18.70 ***  8.424 **  8.781 ** 
cy19/18:1ω7  11.68 ***  0.804 ns  1.607 ns 

          
Soil variables          

          
Moisture  19.31 ***  12.13 ***  4.952 * 

Bulk density  22.36 ***  10.766 ***  7.978 ** 
pH (H2O)  1.921 ns  0.863 ns  1.234 ns 
pH (KCl)  2.868 *  0.571 ns  0.523 ns 

Exchangeable base cations  18.43 ***  11.62 ***  17.21 *** 
P available  2.600 ns  0.555 ns  1.473 ns 

Soil organic matter  1.284 ns  1.651 ns  0.819 ns 
          

∆ T1: integration crop-livestock-forest (iCLF); T3: degraded pasture; T4: improved pasture, T5: native cerrado 
fragment.1Analyses considering all of the samples from the integrated system (iCLF) regardless of position. 
2Analyses conducted considering only the samples from the forest planting within the iCLF system (Canopy). 3 
Analyses conducted considering only the samples from the center of the pasture within the iCLF system. All of 
the PERMANOVAs were conducted using the Euclidean distance of the log(x +1)-transformed data. *P < 0.05; 
**P< 0.01; ***P< 0.001. ns: not significant (P> 0.05).: distance matrix based on the sum of Ca2+, Mg2+ and K+. 

4.5.6. The analysis of the partial PROTEST matches in ANOVA framework 

Despite the 38 significant relationships of soil variables with microbial groups and 
indices identified by the partial PROTEST (Table 2), only 13 were detected by ANOVA as 
being significantly affected by variation in land-use type (Table 2). None of the significant 
effects of the moisture and of the bulk density on microbial variables given by partial 
PROTEST were affected by land use type (Table 2). Within the set of the significant effect of 
pH on microbial variables, the effects on Bacterial, F:B ratio, and total PLFA profile had their 
magnitude partitioned by land use type (Table 2).  

The post hoc test revealed these land use affected matches were generally lower in the 
iCLF system and degraded pasture compared to the effects in the improved pasture (IP) and in 
the native cerrado fragment(NF) (Fig. 5).For the exchangeable base cations variable matches 
affected by land use type (Table 2), the effect of this composite variable on the Gram (-) only 
differed between DP and NF land uses (Fig. 5).On other hand the effect of EBC on cy19/pre 
were higher in the DP and iCLF when compared to NF and IP land use types (Fig. 5). 
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Table 2.The significant relationships (partial Mantel and partial Protest) between Euclidean 
distance matrices based on individual soil variables and Euclidian distance matrices 
based on microbial groups and indices. The significant Procrustean relationships 
(partial Protest) in a form of vectors were used as response in a one-way ANOVA 
framework (factor: land use type with four levels∆). 

       
Relationships(matches)  Partial MantelEuc  Partial ProtestEuc    Land use (ANOVA) 
      F P 
Moisture x total PLFA  0.25***  0.44**  1.030 0.395 
Moisture x Gram(-)  0.16**  0.30*  0.576 0.633 
Moisture x Bacterial  0.17**  0.45***  0.703 0.555 
Moisture x Fungal  ns  0.47***  0.974 0.413 
Moisture x AMF  ns  0.32*  2.296 0.085 
Moisture x F:B ratio  ns  0.47***  0.749 0.528 
        
Bulk dens. x PLFA  0.19**  0.46***  0.443 0.749 
Bulk dens. x Gram(-)  0.15**  0.35**  0.381 0.767 
Bulk dens. x Fungal  ns  0.22*  0.892 0.463 
Bulk dens. x F:B ratio  ns  0.28*  0.923 0.437 
Bulk dens x cy19/pre  0.25**  0.48***  0.118 0.949 
        
pH(H2O) x total PLFA  ns  0.38**  2.510 0.070 
pH(H2O) x Gram(-)  ns  0.28*  2.039 0.095 
pH(H2O)  x Bacterial  ns  0.32*  3.841 0.015* 
pH(H2O)  x F:B ratio  ns  0.29*  3.576 0.020* 
pH(KCl) x total PLFA   ns  0.37**  2.841 0.041* 
pH(KCl) x Gram(-)  ns  0.29*  2.768 0.051 
pH(KCl) x Bacterial  ns  0.32*  3.818 0.015* 
pH(KCl) x cy19/pre  ns  0.30**  2.051 0.119 
        
EBC x total PLFA  0.34**  0.57***  1.004 0.399 
EBC x Gram(-)  0.20**  0.39**  3.224 0.030* 
EBC x Bacterial  0.20***  0.44***  0.754 0.525 
EBC x Fungal  0.20**  0.40***  1.852 0.150 
EBC x F:B ratio  0.20**  0.40**  1.573 0.208 
EBC x cy19/pre  0.10*  0.35**  3.564 0.020* 
        
P x total PLFA  ns  0.031*  3.693 0.017* 
P x Bacterial  ns  0.28*  3.913 0.013* 
P x Fungal  0.14*  0.34**  3.251 0.029* 
P x Actin.  ns  0.33*  3.825 0.015* 
P x AMF  ns  0.31*  6.227 0.001** 
P x F:B ratio  0.14*  0.34**  3.225 0.030* 
        
SOM x total PLFA  0.18**  0.46**  1.657 0.188 
SOM x Gram(-)  ns  0.33**  1.823 0.154 
SOM x Bacterial  ns  0.37**  1.177 0.328 
SOM x Fungal  ns  0.42***  0.353 0.787 
SOM x Actin.  ns  0.31*  4.136 0.010* 
SOM x F:B ratio  ns  0.42***  0.334 0.800 
SOM x cy19/pre  ns  0.31*  0.640 0.593 
        

Euc indicates “Euclidean”, which was the resemblance measure used for building the distance matrices. Prior to calculation of 
dissimilarities, the variables related were log(x+1)-transformed. PLFA: Fatty acid profile. Likewise, the match/effect of each 
soil variable distance matrix was tested after accounting for covariance with other soil variables. ∆ Land use factor levels are: 
DP (degradated pasture); IP (improved pasture); NF (native cerrado fragment); iCLF (integration crop-livestock-forest). 
“EBC” is a composite variable referring to exchangeable base cations (Ca2+, Mg2+ and K+). Actin (actinomycetes); AMF 
(arbuscular mycorrhizal fungi); Bacterial (Gram(+) + Gram(-)); F:B (Fungal:Bacterial ratio); cy19/pre( cy19/18:1ω7); 
SOM(soil organic matter). Here partial Mantel has been run to verify match consistencies given by partial 
PROTEST (main analysis). *P < 0.05; **P < 0.01; ***P < 0.001. 
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Figure 5.Mean test (LSD at 5% of significance; P value adjusted by Bonferroni) showing the 
variation in the match sizes of the pH and exchangeable base cations (EBC)to soil 
variables on microbial groups and indices as affected by the land use types.  All these 
matches are coming from partial PROTEST (Procrustes analyses) based on Euclidian 
of log(x+1) dissimilarities matrices of individual variables. Here, the only effects of 
EBC and pH shown are those that were considered to be affected significantly by land 
use type in the ANOVA (Table 2). IP (improved pasture); DP (degraded pasture); NF 
(native cerrado fragment), integrated crop-livestock-forest (iCLF).  PLFA (general 
microbial profile-20 peaks); Bacterial (Gram (-) + (Gram (+)); F:B (Fungal: Bacterial 
ratio). The expression 1/match is used because these effects are Procrustes association 
metrics representing the matching between individual soil chemical and soil microbial 
variables, which are inversely proportional to the level of relationship (or effect), so a 
higher value indicates a lower effect.  Standard errors (SE) are shown in each bar. 
 

The significant matches between P and microbial variables were all affected by the 
land use type (Table 2). A clear pattern was found given that the effect of the P on microbial 
structure variables was consistently low in iCLF (Fig. 6). 

4.5.7. The partitioning of the partial Procrustes matches within iCLF (sampling origin 
as ANOVA factor) 

The 38 significant relationships provided by the partial PROTEST from Table 2 were 
again subjected to ANOVA, but now considering the sample position within the iCLF as a 
three level factor (canopy, transition, outside).Only the effects of the exchangeable base 
cations variable (EBC) on microbial variables were affected by the sample origin, namelyits 
effects on the Gram (-), bacteria, fungi, F:B ratio, and cy19:0/18:1ω7c ratio (Table 3). Post 
hoc test revealed that all of these effects were quantitatively higher in the (canopy) than in the 
(transition) and (outside) (Fig. 7). 
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Figure 6. Mean test (LSD at 5% of significance; P value adjusted by Bonferroni) showing the 
variation in the match sizes of the Pto the soil variables on microbial groups and 
indices as affected by the land use types. All these matches are coming from partial 
PROTEST (Procrustes analyses) based on Euclidian of log(x+1) dissimilarity matrices 
of individual variables. Here, the only effects of Pon microbial variables shown are 
those that were considered to be affected significantly by land use type in the ANOVA 
(Table 2).  IP (improved pasture); DP (degraded pasture); NF (native cerrado 
fragment), integrated crop-livestock-forest (iCLF). PLFA (general microbial profile-
20 peaks); Bacterial (Gram(-) + (Gram(+)); F:B (Fungal:Bacterial ratio); Actin 
(actinomycetes); AMF (arbuscular mycorrhizal fungi). The expression 1/match is used 
because these effects are Procrustes association metrics representing the matching 
between individual soil chemical and soil microbial variables, which are inversely 
proportional to the level of relationship (or effect), so a higher value indicates a “lower 
effect”.  Standard errors (SE) are shown in each bar. 

  



43 
 

4.6. DISCUSSION 

The word “heterogeneity” used here is not related to the gradient of plant diversity 
across all land use types investigated. It stands for the deliberate heterogeneity (i.e. a man-
driven landscape display) which characterizes the integrated crop-livestock-forest land use 
type (iCLF).This man-driven heterogeneity is mainly caused by the introduction of regular 
tree stands in a pasture followed by soil management. Thus this study has tried to raise 
relevant insights on how this introduced heterogeneity within iCLF makes this land use type 
distinct from others, not only by investigating individual soil chemical and microbial 
variables, but mainly in terms of “matches” between them. To accomplish this we ran a series 
of standard (PERMANOVA) and not standard (BGA and Procrustes associate with ANOVA) 
statistical approaches considering different sampling origins.  

 

Figure 7.Mean test (LSD at 5% of significance; P value adjusted by Bonferroni) showing the 
variation in the match size between EBC and soil microbial variables and on microbial 
groups and indices as affected by the soil sample origin within the integrated crop-
livestock-forest land use (iCLF). All these matches coming from partial PROTEST 
(Procrustes analyses) are based on Euclidian of log(x+1) dissimilarities matrices of 
individual variables. Canopy (samples from tree stand); Out (outside: samples from 
center of the pasture); Trans (transition: samples from canopy projection). F:B 
(Fungal:Bacterial ratio); cy19/pre (cy19/18:1ω7). The expression 1/match is used 
because these matches/effects are Procrustes association metrics representing the 
matching between individual soil chemical and soil microbial variables, which are 
inversely proportional to the level of relationship (or effect), so a higher value 
indicates a “lower effect”.  Standard errors (SE) are shown in each bar. 
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Table 3. One-way ANOVA showing which of the significant matches/effects of soil variables 
on microbial groups and indices (PLFA) given by the partial Protest from Table 2 
were affected by the sample origin within integrated crop-livestock-forest land use 
type (iCLF)(sample origin factor levels: canopy, transition, outside). 

  Sample origin within (iCLF) 
Relationships(matches)  F P 

   

EBC x Gram(-)  8.618 0.0047** 
EBC x Fungal  7.292 0.0084** 
EBC x F:B ratio  7.707 0.0070** 
EBC x cy19/18:1ω7  4.005 0.0400* 
*P < 0.05; **P <0.01. “EBC” is the composite variable: exchangable base cations (Ca2+, Mg2+ and K+). F:B  
(Fungal:Bacterial ratio). 

4.6.1. Sample position within the iCLF system affects microbial-based land use 
variations 

Soil resource heterogeneity is well known as a biological diversification factor 
(Hodge, 2006), whereas variations in landscape characteristics due to the introduction of plant 
species are related to the heterogenization of different ecosystem components, including the 
soil microbial community (Bach et al., 2010; Carson et al., 2010). Thus, using pasture 
together with exotic forest species may make the iCLF system a consistent management 
strategy for seeking diversification of the quality of substrates offered to the soil microbial 
community (Vallejo et al., 2012). It is recognized that although lipid analyses have low 
taxonomic resolution compared to modern molecular techniques, the detailing of the 
microbial community into its main functional members, including fungi and bacteria, is 
sufficient to demonstrate that different land-use types also differ from each other in their 
microbial makeup (Lacombe et al., 2009; Unger et al., 2012; Vallejo et al., 2012). 

Some studies have suggested that introducing tree species into pastures may increase 
the soil microbial diversity. Carson et al. (2010), for example, found that introducing 
Eucalyptus species into pastures favored the maintenance of soil fungal community diversity. 
Similarly, (Lacombe et al., 2009) reported that microbial community stability, associated with 
its heterogeneity, was higher in tree-based systems. The results obtained in this study through 
the strategy of sequentially using samples from different sampling origins within the iCLF in 
the BGA corroborate these previous findings. In our results fungal and bacterial variables 
were responsible for the main contrast between land use types in terms of microbial 
community structure, with iCLF and improved pasture both exhibiting a high fungal 
dominance trend when compared to degraded pasture and native forest. However it is not in 
line with the findings which observed fungal dominance in semi improved and unimproved 
pasture (Grayston et al., 2004). 

Bacteria, fungi, and the F:B ratio were able to discriminate land use types regardless of 
sample position within the iCLF system. This supports other work showing that these two 
groups are suitable for discriminating land use types (Strickland and Rousk, 2010). In this 
point it is noteworthy that the differentiation between land use types based on the Gram (-) 
bacterial profile and the AMF marker (16:1ω5c) was affected by sample position within the 
iCLF. For example, the AMF marker was unable to discriminate land use when samples from 
the center of the pasture within the iCLF system (outside) were considered, but was successful 
when the samples from the forest component of iCLF (canopy) were used. These results 
highlighted the sensitivity of AMF since in the  iCLF system the pasture component 
undergoes recurring interventions such as mechanization and animal introductions, which are 
factors that negatively affect the AMF (Jansa et al., 2002; van Groenigen et al., 2010), 
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whereas the tree stands within the forest component of the iCLF are not subject to the same 
management intensity.  

The same argument used above may be used to try to explain why the land use types 
were discriminated by the Gram (-) bacterial profile when the samples from the center of the 
pasture component (outside) were considered rather than those from the tree stand (canopy). It 
may be due to the fact that the predominance of Gram (-) bacteria is attributed to conditions of 
higher resource availability (Ponder Jr and Tadros, 2002), which are found in the pasture 
component of the iCLF system because fertilizer addition is a practice used when the iCLF is 
in the grain production phase, affecting nutrient availability in the following pasture phase as 
well (Bardgett et al., 2001). These results are in line with Grayston et al. (2004), which 
indicated differences for different levels of management quality by observing that Gram (-) 
bacteria were dominant within improved pasture. However, it does not necessarily mean that 
all iCLF is dominated by Gram (-) bacteria at all, given that our results have also indicated a 
fungal dominance trend within this particular land use type. It suggests that the differences in 
sample origin are important determinants in differentiating the iCLF from other land use 
types. 

Interestingly our results show that soil organic matter (SOM) was unable to 
differentiate the treatments, i.e., land use types (Table 1). Additionally, both the 
PERMANOVA analyses conducted with the canopy samples and those that used the soil from 
the center of the pasture (outside) in the iCLF system did not indicate SOM as a significant 
discriminator of land use types.  It is likely due to the fact that SOM has been weakly related 
to other soil variables (Fig. 2abc). Also, the PCA results based on soil variables has 
highlighted that SOM had no significant contribution for land use type ordination regardless 
in the scenario of sampling origin (Fig. 3abc). Thus these results indicate that sample origin in 
iCLF is not able to discriminate from other land use types in terms of SOM, and also that the 
introduction of exotic tree species in the pasture has still not been able to generate contrasts in 
SOM within the iCLF. It corroborates results from Lai et al. (2007) who found little organic 
carbon variation in response to introduction of tree species into pastures. In contrast to organic 
matter, our results showed that the land use types were separated in all of the PERMANOVA 
contexts (all samples, canopy, outside) by moisture content, bulk density, and exchangeable 
base cations (Ca2++, Mg2+, K+), which suggests that the main difference of land use are 
associated with changes in these soil variables (Berthrong, 2009; Drenovsky et al., 2004). 
Moreover, the PCA results based on soil variables showed these variables as significantly 
related to ordination axes contributing towards highlighting the importance of these variables. 
For example, the bulk density was found to be higher in iCLF and degraded pasture (DP) than 
in improved pasture (IP) and native fragment (NF). Studies have indicated the influence of 
management intensity on the bulk density, by pointing out that areas not undergoing frequent 
anthropic interferences tend to show lowest bulk density values as result of the accumulation 
of plant residues incorporated into the soils, associated with non-disturbance of structure by 
machines, agricultural traffic and animal trampling (Hamza and Anderson, 2005). It may 
explains the low bulk density in the native fragment NF and improved pasture IP since while 
the former is an area without any anthropic interference, the latter is subjected to a low level 
of mechanization and grazing pressure when compared to iCLF and DP.  

The accumulation of plant residues along with the absence of management pressure 
can also explain the relatively higher exchangeable base cations in the native fragment (NF) 
than other land use types. Also it is interesting to note that in our results the improved pasture 
(IP) remained similar to iCLF in terms of low exchangeable base cations availability across 
the two first scenarios of sample origin (all samples and canopy samples). However these two 
land use types became more divergent when samples from pasture within iCLF were 
considered (Fig. 3abc). These results suggest that the spatial variation in the exchangeable 
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base cations availability within the iCLF is driven by the man-generated plant heterogeneity 
characterizing this land use type, as well as it influencing how the iCLF differs from the 
improved pasture. Thus it seems that the area under tree influence has been responsible for 
making the iCLF a bit closer to improved pasture (IP) in terms of exchangeable base cations 
than the area under most pasture influence.  

4.6.2. Microbial structure – soil properties “match size” variation 

The individual effects of the soil variables om individual soil microbial structure 
variables which normally changed in response to alterations in land use type were indicated 
by two analogous analyses: the partial Mantel test and partial PROTEST (Procrustes 
analysis). The fact that the partial PROTEST provided a higher number of significant 
relationships between soil and microbial variables attests to the high power of this analysis 
approach compared to the Mantel test (Peres-Neto and Jackson, 2001).  

As indicated by Procrustes analysis the variables soil bulk density, P availability, 
moisture content and exchangeable base cations showed a significant match to the microbial 
structure variables (Table 2). This reinforces the hypothesis that these variables were 
important in linking the changes in land use with the microbial community at our study site. 
However, only few of these matches/effects were affected by land use type (Table 2). For 
example, the matches between the composite variable exchangeable base cations (EBC) and 
microbial variables, namely Gram (-) and cy19/18:1ω7, were significantly affected by the 
land use type. This suggests that the EBC may be important, linking changes above and below 
ground. These results do agree with the increasing evidence of the important role of 
exchangeable base cations as drivers of the microbial community.  For example, Allison et al., 
(2007) studying temporal and soil depth effects on microbial community structure found that 
SOM was not the main driver of microbial community composition, in contrast to the EBC. 

Minerals are the primary source of EBC in the soils and it has been argued that the 
variation in the distributions of minerals in the soil may influence soil microbial variations 
(Carsson et al., 2009, Reith et al., 2012). For example, Gleeson et al. (2005,2006a) showed 
that singular bacterial and fungal communities colonized different minerals. However, despite 
these interesting previous findings it is unlikely that the mineral variability is the main 
mechanism explaining the partitioning of the matches between the EBC and the microbial 
variables by the land use type. The reason for this is that the entire area encompassing all land 
use types investigated has the same geological formation, being characterized by an intense 
soil weathering, which in turn is related to a narrow clay mineral range, namely kaolinite and 
iron oxides. Since this scenario stands for low natural soil fertility, it is more likely that EBC-
microbial variable matches differences across land use types are due to the management 
history rather than geological formations. Our results showed that the EBC are high in the 
native fragment (NF) and low in the other land use types (Fig. 3abc). Interestingly the NF 
exhibited the weaker matches between EBC and microbial variables related to fertility status 
as Gram (-) and cy19/18:1ω7 (Ponder and Trados, 2002; Aliasgharzad et al., 2010) when 
compared to the other land use types, specially DP and iCLF (Fig. 5). It suggests  low 
starvation effects on Gram (-) community in the NF whereas in the other man-managed land 
use types, specially DP and iCLF, the bacterial community seems to be more affected  by the 
lack of resources as a result of  lower EBC exhibited.   

The PCA on soil chemical variables and the correlations among individual soil 
chemical variables showing that pH was positively linked to exchangeable base cations 
supports low matches of pH to microbial structure variables in DP and iCLF. This may be due 
to the high soil acidity and thus to the low nutrient availability. The relative distinctiveness of 
fungi and bacteria in relation to acidic environmental preferences has been well documented, 
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with fungal communities tending to dominate in the more acidic soils than bacteria (Rousk et 
al., 2009; Strickland and Rousk, 2010). We found weak matches between pH and microbial 
structure variables in DP and iCLF (Fig. 5), and within these matches the response of F:B  
ratio was a general measure of microbial shifting structure (Strickland and Rousk, 2010). 
Thus one would be expecting fungi to be dominant in DP and iCLF rather than in NF and 
iCLF. Our results indicated a fungal dominance trend in iCLF followed by IP (Fig. 4). Thus it 
is likely that the acidity in the DP is not associated with fungal dominance trend but rather 
with a bacterial community more adapted to acidity and starvation conditions as Gram (+), 
which was partially supported by our results (Fig. 4ab). 

The variation in P availability had significant matches with microbial structure 
variables and supports the importance of this nutrient as a driver of soil microbial community, 
especially in tropical conditions (Liu et al 2012, 2013). Additionally the matches/effects size 
between P and microbial structure variables were observed to be more partitioned by land use 
type than the matches of other soil properties (Table 2). Interestingly, the effects of P on 
microbial variables such as F:B ratio, were less intense (weaker matches) in the iCLF than in 
the other treatments (Fig. 6). Although it is known that P affects the microbial community 
(Liu et al., 2012, 2013; Zhang et al., 2013), it is striking that these effects on the microbial 
community were less prominent  in a unique land use type, namely iCLF, even though P 
availability was also low for other sites (Fig. 3). By associating these results with those 
reporting that iCLF has low P, low EBC (Fig. 3) and fungal dominance trend (Fig. 4), it is 
suggested that that microbial community found at iCLF is adapted to low resource availability 
(Rinnan and Baath, 2009; Rousk and Baath, 2007). We recognize, however, that resource 
availability is usually related to other important soil nutrients, especially N. Even so, these 
results highlight the importance of the P in our study area, which is characterized by high soil 
immobilization of this element. 

4.6.3. The match between exchangeable base cation and soil microbial variables within 
the iCLF 

Only the effects (matches) of EBC on microbial structure variables were partitioned by 
the sampling position within the iCLF. Clearly, the canopy and outside positions differed 
regarding magnitude of these effects (Fig. 7), with F:B ratio, Fungi, cy19/18:1ω7c and Gram 
(-) being higher under the canopy. As stated the canopy represents the area under highest 
influence of tree plantation whereas outside is the area the under low influence of the tree 
component. We have discussed in previous sections that the outside samples within the iCLF 
made this land use type more distinct from improved pasture in terms of EBC availability 
whereas the canopy samples made these two a bit closer as showed by PCA results (Fig. 
3abc). It indicates that the canopy and outside samples within iCLF differ in EBC suggesting 
that the man-generated plant heterogeneity within iCLF may be shifting the soil microbial 
community structure by changing their response to base cations (Bach et al., 2010; Carson et 
al., 2010; Diedhiou et al., 2009). 
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4.7. CONCLUSIONS 

It is mandatory to stress that despite interesting insights raised by this study, any 
temporal and spatial evaluations were not carried out. More studies are needed to address 
spatial and temporal consistencies of the land use type effects on the matches between 
microbial community and soil properties. Even so, the use of the Procrustean metric 
associated with downstream statistical approaches may open an interesting avenue for soil 
microbial ecologists, as it allows them to put the correlation as a central object of study either 
as response or predictor. In the present case by using Procrustes association metric in the 
ANOVA framework, we were able to show that the land use type distinction can be driven not 
just by individual soil chemical and microbial variables. The partitioning of the match sizes 
between soil chemical and microbial variables across land use types was useful in showing 
that iCLF appears to be an alternative for sustainable management as it showed a fungal 
dominance trend in an environment with low pH and fertility. Furthermore, we gained 
insights that both P and EBC are the most important soil chemical variables linking changes 
above and below ground. However, while the responses of microbial variables to the P are 
more land use type dependent, the effects of EBC (Ca+2, Mg+2, K+) on microbial community 
variables are mainly affected by the samples position. Finally, we concluded that increases in 
the heterogeneity of vegetation within integrated crop, pasture and forestry systems are an 
important driver of microbial community response to environmental changes, and may be one 
means by which to increase the sustainability of tropical agroecosystems. 
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5.1. RESUMO 

O vetor de resíduos Procrusteanos (ou PAM, um acrônimo para o termo equivalente em 
inglês: Procrustean association metric) derivado da análise Procrustes pode ser visto como a 
forma univariada do relacionamento entre duas ou mais tabelas de dados multivariados, o que 
fornece interessante maneira para que ecologistas coloquem o relacionamento multivariado 
como objeto central de investigações em abordagens estatísticas mais familiares, como 
ANOVA e comparação de médias. Porém, muitos aspectos precisam sem melhor elucidados 
no sentido de tornar ecologistas mais confidentes em usar a Procrustes em seus estudos. Aqui, 
foram exploradas duas questões comumente levantadas por ecologistas não versados na 
Procrustes: 1) Usando dados do segundo capítulo da presente tese (PLFA: tabela Y; 
Fertilidade: tabela X), foi indagado: i) como o crescente número de colunas/variáveis 
correlacionadas em diferentes níveis dentro de uma das tabelas de dado usadas na Procrustes  
(tabela X) é capaz de afeta os resultados da análise? ii) Usando tabelas de dados simuladas 
perguntamos: a PAM é capaz de mostrar como a correlação multivariada entre tabelas de 
dados  é particionada por diferentes tratamentos? Observou-se que o crescente número de 
variáveis correlacionadas (6, 9, 12 e 15) em diferentes níveis (0,9, 0,7, 0,5 e 0,2), dentro da 
tabela de dados não sujeita às transformações inerentes à análise Procrustes (translação e 
rotação), no presente caso a tabela X, não teve efeito sobre resultados clássicos da Procrustes 
relacionados ao seu ajuste (estatística R e sua significância). Também, o crescente número de 
variáveis correlacionadas em diferentes níveis não teve claro efeito sobre a significância da 
ANOVA usando a PAM como resposta. Por outro lado, a crescente correlação entre duas 
tabelas de dados, X e Y, para uma parte específica das mesmas representando hipotético 
tratamento foi detectada pela PAM quando esta foi usada em comparação múltipla de médias. 
Coletivamente nossos resultados suportam que as estatísticas Procrusteanas levam apenas em 
consideração a informação existente entre as tabelas de dados sob investigação, e que a PAM 
de fato reflete a diferença em termos de correlação multivariada quando esta é usada em 
procedimentos estatísticos mais tradicionais, como a comparação de médias, o que pode ser 
útil para ecologistas de planta e solo, e ecologistas de uma forma geral, interessados em 
levantar indícios sobre a variação da correlação multivariada entre diferentes níveis 
categóricos (parcelas, paisagens, tipos de uso da terra, gradientes ambientais, etc.). 
 

Palavras-chave: Análises multivariadas. Métrica de associação. Tabela de dados 
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5.2. ABSTRACT 

The Procrustean residual vector (or PAM, an acronym for the alternative equivalent term 
Procrustean association metric) derived from Procrustes analysis can be seen as the univariate 
form for the relationship between two or more data tables, which provides an interesting way 
for ecologists to place multivariate relationships as the central object of investigation in more 
familiar statistical approaches such as ANOVA and post hoc tests. However, many aspects 
need to be elucidated to become ecologists more confident on using the Procrustes in their 
studies. Here we attempted to explore two questions: i) How does the increasing number of 
correlated columns within an entire data table affect the Procrustes results? ii) Can the PAM 
be used for detecting how the correlation is partitioned across treatments levels within the 
original data table? We found that the increasing number of correlated variables (6, 9, 12, and 
15) across different imposed correlation levels (0. 9, 0.7, 0. 5, and 0.2) in the data table not 
subject to Procrustean linear transformation (translation and rotation), i.e. the X data table,  
had no effects on classical Procrustes outcomes related to the fit between data tables(R 

statistic and its P value) and on the significance of the ANOVA using the Procrustes residual 
vector (PAM), which summarizes the multivariate correlation between two data tables, as 
response. On other hand increasing the between correlation levels between X and Y data 
tables for a specific treatment resulted in PAMs that, when used in mean multiple 
comparisons, did show this categorical level as different from all others. Collectively our 
results supports that Procrustes fit is only dependent of the information between data table 
instead of within data table, and the PAM reflects the differences in multivariate correlation 
across data tables when it is used in downstream statistical approach, such as multiple 
comparisons of means, what can be useful for ecological questions addressing the partitioning 
of the multivariate correlation among different categorical levels (plots, time, land use type, 
etc). 
 

Keywords: Multivariate analysis. Association metric. Data tables 
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5.3. INTRODUCTION 

Analysis of Variance (ANOVA) is used as a tool to split the variability of a given 
outcome of interest into basic components like: 1) the variability explained by one or more 
categorical predictors; 2) the residual variation. In the ANOVA framework the response 
variables can vary in their nature, being classified as continuous or discrete, and univariate or 
multivariate.  The simplest univariate context of ANOVA, that is, one response and one 
categorical predictor is obviously easier to analyze than the multivariate context; however for 
ecologists the univariate world rarely exists given that many ecological questions require one 
to handle multiple variables. Therefore the question arises: how can ecologists fit the natural 
multivariate requirement of ecological research to the simplicity of the univariate ANOVA 
and post hoc test frameworks?  

Lisboa et al. (2014a) showed how the results from Procrustes analysis (Gower, 1971),a 
multivariate statistical approach for correlating data tables representing sets of information 
coming from the same object of study: plots, Environmental gradient levels, experimental 
treatments, etc, could be used in downstream statistical analysis, including ANOVA and post 
hoc tests.  Procrustes analysis has been shown to be statistically superior in some aspects 
(lower Type I error and higher power) than the traditional analogue approach, the Mantel test 
(Peres-Neto and Jackson, 2001)and one of the features that arise from Procrustes analysis is 
the possibility of providing the multivariate relationship among two, or more, data tables in a 
vector form make by residuals, the Procrustean residual vector, also named the Procrustean 
association metric (PAM) (Lisboa et al. 2014a). For example, assuming that an ecologist 
wants to correlate two data tables, X and Y, the first one representing abiotic variables 
(climate, soil, elevation, etc), and the second one representing a certain biological community 
(birds, bacterial, etc). Moreover let`s assume that in X and Y all variables (columns) were 
measure from fifth plots, which represent the rows of the data tables. Procrustes analysis will 
found the “best” fit of homologue coordinates across X and Y data tables by seeking to 
minimize of the sum of squares between correspondent coordinates in X and Y, i. e. the plots 
or rows of these tables. Given that the Procrustes fit is never perfect, the PAM stands for the 
residuals between corresponding coordinates (the plots or rows of X and Y) after the “best” fit 
among the tables has been found so that the lower residual sizes in the PAM, the higher the 
correlations. The compilation of these residual differences between homologous rows in the X 
and Y data tables making up the Procrustean residual vector (PAM)  and represents a useful 
way to represent information on the relationship between two matrices and make it available 
for further statistical analysis, both parametric and non-parametric (Lisboa et al., 2014a). 

 Despite of the potential uses of this Procrustean feature in ecological research, the 
rigor of this composite framework (made up of PAM – ANOVA – Post hoc tests) has not 
been assessed.  In particular two: 1) how does the increasing number of columns correlating 
within an entire data table affect the Procrustes results? 2) Can the PAM be used for detecting 
how the correlation is partitioned across treatments levels within the original data table? For 
simplicity, the Procrustes analysis results can be divided into two sets 1) mainstream results, 
which take account of the correlation statistic (R) between multidimensional data tables and 
its significance: (P value), i. e. the Procrustes fit; and 2) downstream results, which are 
related to statistics provided by the analysis of the PAM using other statistical frameworks, 
like ANOVA and multiple comparisons of means using, for example, Tukey’s HSD test.  

With respect to the first question, Dray et al (2003) argued that the Procrustes fit, that 
is, the mainstream results, is only influenced by the variation between matrices. It arises that 
the variation in the number of columns correlating within a data table should not influence the 
mainstream results such as R statistic and its P value. However, nothing is known about the 
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consequences of the number of columns correlating within a data table on the PAM. For 
example, it was never explored whether the increasing correlation within an entire data table 
is conveyed to the PAM and whether it affects outcome as those from using PAM as response 
in ANOVA framework.   

On other hand there are no papers exploring explicitly the following statement: “the 
analysis of the PAM, by looking at consistencies of the residual size between homologues 
coordinates across different treatments, could be useful for providing insights about 
differences in terms of multivariate correlation”. Such statement is linked to the use of the 
PAM in downstream statistical analysis such as multiple comparison of mean, for instance 
Tukey’s HSD test. Thus we investigated whether the PAM is able to detect differences in 
multivariate correlations among treatments when it is using in multiple comparison of means.  
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5.4. MATERIAL AND METHODS 

5.4.1. First question: does the increasing number of correlated columns within an entire 
data table affect Procrustes results? 

For assessing whether the increasing number of columns correlating within an entire 
data table affects the Procrustes results we used two data tables from a study by Lisboa et al. 
(2014b). In this study the authors used Procrustes analysis together with ANOVA and mean 
multiple comparisons in order to assess how the strength of the “match” 
(correlation/correlations) between individual soil microbial community variables and 
individual soil fertility variables varied across four land use types (native forest, degraded 
pasture, improved crop, integration crop-livestock-forest). The soil microbial community 
(PLFA profile) and the soil fertility data tables had the following dimensions: (n = 53, p = 20) 
and (n = 53, p = 15), respectively. Hereafter n and p stand for row and column numbers in the 
data tables, respectively. 

Four correlation levels (0.2; 0.5; 0.7; and 0.9) were incorporated into different number 
of columns within the soil fertility data table (n = 53, p = 15), hereafter the X data table. The 
number of soil variables that were correlated was increased gradually (6, 9, 12, and 15) (see 
section 2.1.1 for method), whereas the PLFA profile data table (n = 53, p = 20), here Y, had 
its original correlation structure unaltered. After that X (soil fertility) and Y (PLFA profile) 
data tables were submitted to thirteen pre-transformations. These 13 pre-Procrustes 
transformations were used to encompass the three different manners in which X and Y data 
tables can be used in the Procrustes analysis: raw data, distance matrices, ordination axes (Fig. 
1c)Finally the Procrustes relationships between X (soil fertility) and Y (PLFA profile) were 
simulated hundred times for each pre-transformation. Therefore from each set of 100 
simulations / pre-transformation  within a given number of correlated columns within X (6, 9, 
12, 15) with a given correlation level (0.2; 0.5; 0.7; 0.9), we retained the following statistics: 
1) the average of the Procrustean correlation statistic (R value); 2) the number of times that 
the R statistic was significant (P value); 3) the PAM average (a Procrustean residual vector 
from the average of the 100 simulations); 4) the residual size range within the PAM  average 
(subtracting the highest and the lowest residual sizes linking the two data tabled after 
Procrustes fit); 5) the number of times in which the ANOVA using the PAM average as 
response and the land use type as factor (4 levels) was considered significant (P < 0.05). 
Thus, we retained 13 sets of Procrustes information which were used for making up graphs. 
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Figure 1. General approach used in the study. a) Illustration of the first question addressed: 
the effects of increasing the number of variables correlating within X data table (soil 
fertility, n = 53, p = 15) on the Procrustes results. For each number of columns (6, 9, 
12, 15) in the X data table, four correlation levels were imposed (0.2; 0.5; 0.7, 0.9). 
The X data table was related to Y data table (PLFA profile, n =53, p = 20, none 
correlation structure imposed to it) by Procrustes analysis. X and Y data tables are 
from Lisboa et al. (2014b). b) Illustrates the second question:  whether the correlation 
level between X and Y data tables (simulated data) incorporated into a specific 
treatment (treatment A) is reflected in the results of ANOVA analysis of the PAMs. 
The correlation between X and Y for all others treatments (B, C, and D) was not 
greater than 0.1. c) The different pre-Procrustes transformation in which X and Y were 
used in the Procrustes analysis (raw data, distance matrices, ordination axes). Each of 
these pre-transformations was simulated 100 times in order to get the results. 

 
5.4.2. Correlation incorporated into soil fertility data table for accessing the first 
question 

The process of incorporating distinct correlation levels into the soil fertility data table, 
the X data table, followed two basic steps:  

a) Specific level - correlation matrix M generation (0.2, 0.5, 0.7, and 0.9); 
b) Spectral decomposition of M intoLLT, and multiplication of LT by the transpose of 

the soil fertility matrix X.  
For generating the specific-level correlation table M, we used the R functions 

described by Hardin at al. (2013) which are intended for building correlation matrices with 
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noise addition (http://pages.pomona.edu/~jsh04747/research/simcor.r.). Here the noise added 
to the M entries was from -0.001 to 0.001. After obtaining M,its correlation structure levels 
were incorporated into the soil fertility data table by using the following R code: 

 
fert.unc<-t((solve(t(chol(cov(fert.m)))))%*%t(fert.m)) # makes X data table uncorrelated 
object<- t(chol(M))%*% t(fert.unc) # incorporates correlation structure levels 
objetc.df <- t(objetc)       # creates the simulated soil fertility data frame 
corrplot(cor(object.df)) # checks the correlation structure incorporated 
 

Specifically, all correlation structure levels (0.2; 0.5; 0.7; and 0.9) were incorporated into the 
entire X data table (n = 53, p =15) and from them the number of columns (variables) 
correlating was reduced gradually (15, 12, 9, and 6) within each correlation level. It means X 
data table having 15 (total), 12, 9, and 6 columns correlating at 0.2; 0.5; 0.7 and 0.9.  The 
columns within the soil fertility that were left without any correlation level imposed. For 
example, for evaluating the effects of correlation levels imposed into 6 columns of the entire 
X data table (n = 53, p = 15) the rest of 9 columns within X were not correlated among them. 
It means that actually the soil fertility data table, the X data table, was only a template for our 
investigation and its original correlation does not matter. The whole process from 
incorporating different correlation levels into an increasing number of columns within the X 
data table to the Procrustes analysis was simulated 100 times for each one of the 13 pre-
Procrustes transformations described in Fig. 1c.  

5.4.3. Second question: can the PAM be used for detecting how the multivariate 
correlation is partitioned across different treatments? 

For assessing whether the use of PAM in multiple comparisons of means is able to 
detect differences among treatments in terms of multivariate correlation, simulated data tables 
X and Y were used. One can visualized as if these data arose from a hypothetical scenario 
where X and Y are data tables derived from a study investigating how the multivariate 
correlation between general plant community (X data table) and its functional traits (Y data 
table) is partitioned across an environmental gradient based on the time elapsed after an 
intense burning event. Also, one can consider that X and Y are encompassing four times 
elapsed after burning event where plant community (X data table) and functional traits (Y 
data table) were measured times A, B, C, and D.  

Hereafter these four times will be referred as treatments. Four different correlation 
levels (0.2; 0.5; 0.7; 0.9) were only incorporated into the treatment A for both X and Y data 
tables, and this treatment A corresponds to the first ten rows of each these data table. For all 
other treatments (B, C, and D) the correlation between X and Y was never greater than 0.1 
(Fig. 1b). After correlation level incorporation, the 13 pre-Procrustes transformations were 
applied to both, X and Y data tables, before the Procrustes analysis (Fig. 1c). All steps from 
the X and Y data table generation to Procrustes analysis were repeated 100 times. Also, these 
simulations were carried out varying the number of columns (variables, p) in relation to the 
number of rows (sites, n) so that X and Y were data tables with the follow dimensions: (n = 
40, p = 25); (n = 40, p = 45) and (n = 40, p = 80).  From each set  of 100 simulations / pre-
transformation within a given correlation level between X and B data tables incorporated into 
to the treatment A (0.2; 0.5; 0.7; 0.9) we retained the following information from the 
Procrustes results: 1) the number of times in which the treatment A came out as being 
different from all other treatment (A ≠ B,C,D) when using the average PAM in Tukey HSD 
(95%); 2) the average number of the Procrustean residual size in each treatment (A, B, C, D). 
Thus, for each correlation level between X and Y in the treatment A, we retained 13 sets of 
Procrustes information which were used for making up graphs. 
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5.4.4. Different correlation levels between X and Y for a specific treatment 

For creating the simulated data tables with different between correlation levels for a 
specific categorical level in both X and Y tables (namely level A) we first created sets of three 
“big” tables: 1 (n = 10, p = 50), 2 (n = 10, p = 90), 3 (n = 10, p = 160). Four correlation 
structure levels were incorporated into each “big” table (0.2; 0.5; 0.7; 0.9), and this was 
carried out using the same procedure described for the soil fertility data table in the first part 
of this paper.   

After the correlation structure was added to the “big” data tables, each one was broken 
down into two equal tables. For example, in the case of a “big” table (n = 10, p = 50) with a 
given correlation level of 0.2, it was divided into Xcorr0.2 (n = 10, p = 25) and Ycorr0.2 (n = 
10, p = 25) tables.  Thus, each one of these “big” tables provided four pairs of X and Y data 
tables (n = 10, p = 25, 45, 80) representing different correlation levels between them for the 
treatment A, such that: (AXcorr0.9versus AYcorr0.9); (AXcorr0.7versus AYcorr0.7); 
(AXcorr0.5versus AYcorr0.5); (AXcorr0.2 versus AYcorr0.2). 

For taking account of other treatments (B, C, and D) we created three “big” tables: 1 
(n = 30, p = 50), 2 (n = 30, p = 90), and 3 (n = 30, p = 160), with all columns p having the 
same correlation level (corr. < 0.1). These tables were broken down as in the same way as for 
treatment A. Thus, for each (n = 30, p = 25, 45, and 80) four pairs of X and Y tables were 
generated. The tables AXcovi and AYcovi were then linked to BCDXcorr<0.1 and 
BCDYcorr<0.1 tables, respectively, in order to build the entire X and Y tables (n = 40, p = 25, 
45, 80) as shown in (Fig. 1b).  The whole process of incorporating different correlation levels 
into X until the Procrustes analysis was simulated 100 times for each one of the 13 pre-
Procrustes transformations described in Fig. 1c.  
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5.5. RESULTS 

5.5.1. Imposed correlation effects on individual mainstream and downstream Procrustes 
results 

Both classical Procrustes mainstream results, the Procrustean correlation statistic R 

and its significance (P value), remained constant irrespective of the increasing number of 
correlated variables within the X data table and the level of correlation incorporated into them 
(Fig. 2ab).  The constancy across the increasing number of correlated columns and their 
imposed correlation levels within the X data table was also true for Procrustes results 
involving the PAM, such as the measure of residual size variability across individual PAMs, 
the residual ranging size (maximum minus minimum residual sizes in the PAM linking the 
two data tables under analysis), and the number of significant ANOVA results using PAMs as 
response variable (Fig. 2cd).  

5.5.2 Raw data, distance matrices, and ordination generated similar Procrustes results 

It was observed that the forms in which two data tables can be used in the Procrustes 
analysis (raw data, distance matrices, ordination axes) no clearly differed each other in 
relation the Procrustes outcomes regardless the imposed correlation level (Fig. 3). Moreover, 
it was observed that when the average PAMs for each pre-Procrustes treatment (100 
simulations) were used in an ordination analysis (NMDS, “Euclidian distance”), the PAMs 
coming from different data type entries (raw data, distance matrices, ordination axes) were not 
divergent each other (Fig. 4).  

 
Figure 2.Effects of increasing number of correlated variables (6, 9, 12, 15) across in different 

levels (0.9; 0.7; 0.5; 0.2) within an entire X data table on Procrustes results.a) Effect 
on Procrustes correlation statistic R; b) Effect on significance of Procrustean 
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relationship (P value); c) Effect on residual size ranging within the vector of 
relationship (Procrustean association metric: PAM); d) Effect on ANOVA 
significance  by using the PAMs as response and land use type (4 levels) as categorical 
predictor. The X (soil fertility) and the Y (PLFA profile) data tables are derived from 
Lisboa et al. (2014b).  The correlation within Y data table was held fixed (original 
correlation structure). Means ± 1 SE of 13 pre-Procrustes transformations simulated 
100 times are shown (Fig. 1c). Procrustes statistic R was negatively related to the 
number of significant PAM-ANOVA results(Fig. 5). The measure of residual size 
variability across individual PAMs, the residual ranging size within a single PAM, was 
negatively and consistently related to the number of significant PAM-ANOVA results, 
irrespective of the increasing number of correlated columns and the imposed 
correlation level (Fig. 5). 

5.5.3. Correlation between mainstream and downstream results 

Despite a trend of decreasing, the number of significant PAM-ANOVA results (P < 
0.05) was not clear related to the increasing number of significant Procrustes statistic R ( P < 
0.05) across imposed correlation levels in X data table (Fig. 5). On other hand, within the 
highest correlation levels (0.9; 0.7; and 0.5), the higher Procrustes statistic R was related to 
the higher number of significant PAM-ANOVA results, irrespective of the number of 
correlated columns; however, in the lowest imposed correlated level (0.2) the increasing 
Procrustes statistic R was negatively related to the number of significant PAM-ANOVA 
results(Fig. 5). The measure of residual size variability across individual PAMs, the residual 
ranging size within a single PAM, was negatively and consistently related to the number of 
significant PAM-ANOVA results; irrespective of the increasing number of correlated 
columns and the imposed correlation level (Fig. 5). 
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Figure 3.  Effects of the increasing correlation level within a data table on Procrustes results 

by using different forms through whichX and Y data table can be analyzed in 
Procrustes: raw data, distance matrices, and ordination axes. Each point represents 
different sets of the pre-transformations (Fig. 1c) corresponding to X and Y data tables 
in form of raw data, distance matrices, and ordination matrices, irrespective of the 
number of correlated columns. 

 
Figure 4.NMDS ordinations (Euclidian distance) of Procrustes residual vectors (PAMs). In a, 

PAMs are grouped according to the number of correlated variables in X data table. In 
b, the PAMs are grouped based on the form in wich X and Y data table were used in 
Procrustes (raw data, distance matrices, and ordination axes). Each symbol represents 
the mean PAM from 100 simulation of each pre-Procrustes treatment described in Fig. 
1c. 
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5.5.4. Correlation between X and Y data tables for a specific treatment 

The mean percentage of significant ANOVAs using PAMs as the response variable 
increased as the correlation level between X and Y data tables for treatment A increased (Fig. 
6a). The mean number of times where the treatment A was significantly different from all 
other treatments (% A ≠ BCD) increased as the correlation level between X and Y for the 
treatment A increased (Fig. 6b). For all dimensions of  X and Y, the higher correlation levels 
between these two data tables for the treatment A (0.7 and 0.9) were reflected by the mean 
Procrustes residual size  for treatment A being lower than others B, C, and D (Fig. 7a-c). At 
the lower correlation levels between the X and Y data tables for the treatment A (0.2 and 0.5) 
the mean Procrustes residual size for treatment A was not different from the others, B, C, and 
D (Fig. 7a-c). 
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5.6. DISCUSSION 

The use of the Procrustes residual vector (PAM) in ANOVA and multiple 
comparisons is not widespread as an ecological routine (Lisboa et al., 2014a). The reasons for 
this are diverse, including the lack of studies exploring the limitations of this composite 
framework. Here, we have attempted to address two questions:  1) how does the increasing 
number of columns correlation within an entire data table affects the Procrustes results? 2) 
Can the Procrustean residual vector (i.e. the PAM) come out differences among treatments in 
terms of multivariate correlation when it is used in multiple comparisons of means? 

5.6.1. Correlation level within a data table does not clearly affect the Procrustes fit and 
PAM-ANOVA results 

The most common use of Procrustes analysis in the ecological literature is for 
comparing different methodologies. For example, in soil microbiology Procrustes analysis has 
been used for comparing ordination patterns from different methods of accessing the soil 
microbial community (e.g. PLFA, T-RFLP, high throughput sequencing) (Vinten et al., 2011). 
Others authors have used Procrustes to assess how sampling error levels could affect the 
correlation between ordinations (Hirst and Jackson, 2007). All these examples used 
Procrustean parameters, such as the Procrustean R correlation statistic and its significance for 
assessing the fit between methodologies, which stress that the Procrustes fit is usually the 
final aim of the most part of studies using that approach.  

The low appearance of Procrustes in the ecological literature, especially in plant and 
soil ecology (Lisboa et al., 2014a), results in no information on the consequences of the 
correlation within an entire data on Procrustes results and, in the sense of using the 
Procrustean residual vector (PAM) in others statistical frameworks, such as ANOVA, there 
are no any reference. Here our results indicated no clear effects of the increasing number of 
correlated variables across different imposed correlation levels in X data table.Procrustes  
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Figure 5. Correlation between Procrustes outcome related to the fit (mainstream Procrustes 
results) and the Procrustes outcome related to the use of the PAM in ANOVA 
framework (downstream result). The lines represent the numbers of correlated 
columns/variable within the X data table having a specific correlated level (0.9; 0.7; 
0.5; and 0.2). Each point arises from a pre-transformation used for simulating the 
procrustes relationship between X and Y data table hundred times. 
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Figure 6. Procrustes downstream results as affected by the correlation levels between X and 
Y data tables incorporated into specific treatment A, while holding fixed the 
correlation level between X and Y for others treatments B, C, and D (correlation 
<0.1).a) Mean percentage of significant ANOVA (P< 0.05) when the Procrustes 
residual vectors (PAMs) were used as response variable. b) Mean percentage of the 
times that A treatment was significant different from all other treatments in multiple 
comparison (Tukey, 95%, CI). Means ± 1 SE of 13 pre-Procrustes transformations 
simulated 100 times are shown (Fig. 1c). 

analysis  used for carrying our simulation out was that occurring as default in vegan R 
package (Oksanen et al., 2013),  which  keeps one of the configurations fixed while the other 
configuration is submitted to translation and rotation in order to minimize the sum of squares 
of  corresponding  points. In our simulations the fixed configuration was that from X data 
table, that is, the data table with the increasing number of correlated columns across different 
imposed correlation levels. Thus all linear transformations which are inherent to Procrustes, 
such as translation to find a common centre between configurations followed by rotation on a 
constant angle to find the best fit between them, were only applied to Y data table, which in 
our simulation was that keeping its original correlation structure. In more simple words it 
means that the Procrustes “bed” was the correlation imposed data table, X,and the 
Procrustes“guest” was the non-imposed correlation data table, Y. Thereby, despite of both, X 
and Y data tables, have been submitted to the same set of Procrustes pre-transformations (Fig. 
1c), only the Y data table – multidimensional configurations were object of the translation and 
rotation. It is important to be stressed as it has to do with the statement that Procrustes fit take 
only account the differences between X and Y configurations (Dray et al., 2003), which can 
be seen by:  

fitXY = trace ((X -Z)T(X - Z))  (Gower, 1971), 

where the Z matrix corresponds to the new set of coordinates arising from linear translation 
and rotation on Y data table – multidimensional configuration. It can cast light on our results 
showing that the increasing number of correlated columns across different imposed 
correlation levels did not come up with differences in terms of both, mainstream and 
downstream Procrustes results. 
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Figure 7.Accessing how multivariate correlation levels between two data tables incorporated 

into a specific treatment (treatment A: 0.9; 0.7; 0.5; and 0.2) are able to generated 
Procrustes residual vectors (PAMs) capable to differentiate this treatment from others 
(B, C, and D) in a multiple comparison. The correlation between X and Y for all other 
treatments (B, C, and D) was held fixed at <0.1.a) PAMs from Procrustes relationships 
between X and Y data tables with dimensions (n = 40, p =25), where n = nº rows and 
p = nº columns.  b) PAMs from Procrustes relationships between X and Y data tables 
with dimensions (n = 40, p =45). c: PAMs from Procrustes relationships between X 
and Y data tables with dimensions (n = 40, p =80). All PAMs used in the multiple 
comparisons were generated from simulations of 13 pre-Procrustes analysis 
transformations as described in (Fig. 1c).  

Since Procrustes takes “two to tango” by relating multidimensional configurations, 
which in turn are affected by the kind of pre-transformation on the data tables (Legendre and 
Gallagher, 2001), it would be expected that the X data table - multidimensional configurations 
(without translation and rotation) could have had some effect on Procrustes outcomes.  
Nonetheless, our results suggest there was no effect of the X data table - pre-transformations 
on their respective X data table – multidimensional configurations due to the high similarity 
between raw data, distance matrices and ordination axes in terms of Procrustes results and 
PAMs, irrespective of the imposed correlation level. Thus, this results suggests that the 
existing correlation within the non-translated and non-rotated configurations, in our case those 
from X data table, may not be  a hurdle for the Procrustes results, irrespective of using raw, 
distance matrices, or ordination axes as entries. 
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5.6.2. Significant P value should not serve as a ground for choosing PAMs to be used in 
ANOVA 

The use of the PAM in other statistical framework represents a non-well explored 
avenue of possibilities. It is which we can call of “analysis of the analysis” since we are 
analyzing the multivariate correlation depicted by a unique vector composed by Procrustean 
residuals, the PAM. One of the questions that could arise is whether the PAMs that should be 
uses on downstream statistical approaches such as ANOVA are only those coming from 
significant Procrustes relationship (P < 0.05). Does it really make sense? Our results showed 
that no. It is because the number of significant R value was not clear related to the number of 
significant PAM-ANOVA results across different imposed correlation levels (Fig. 5).  On 
other hand, the other Procrustes fit outcome, the R statistic, was positively related to the 
number of significant PAM-ANOVA results, which suggest that, irrespective of significance, 
the higher correlation statistic the higher chances of a PAM-ANOVA significant result. 
However, it was observed that in the lowest imposed correlation level (0.2), the higher R, the 
lower is the chance of getting a significant PAM-ANOVA result, which indicates an existing 
correlation effect on the nature of the relationship between mainstream and downstream.  

In addition, for another way of seeing the Procrustes fit: the residual size variation 
within a single PAM, we observed the clearest pattern of relationship between the numbers of 
significant PAM-ANOVA results (Fig. 5). As one can remember the residual sizes within a 
single PAM are connecting  corresponding points across two multidimensional configurations 
after the best fit between them have been found out (Schneider and Borlund, 2007b). It means 
that the lower residual size variability, the higher is the fit between two configurations. Our 
results showed that independent from the imposed correlation level, and the number of 
columns correlating, the lower residual variability in a single PAM, the higher the number of 
significant PAM-ANOVA results (Fig. 5).Therefore, our results are showing that to use only 
PAMs coming from significant Procrustes relationship may not make sense. 

5.6.3. What does PAM tell us? 

An argument advocating the use of the Procrustes residual vector in a downstream 
statistical approach using ANOVA and multiple comparisons is that the consistencies in the 
Procrustean residual sizes, which are linking the two or more tables under investigation, could 
be used to make inferences on the strength of the multivariate correlation across 
environmental gradients.  However, so far, no studies had explicitly explored such statement. 
In fact the few existing studies that used the PAM to make inference that goes beyond 
accessing the correlation between data tables were based on that statement (Singh et al., 2008, 
Landeiro et al., 2011, Siqueira et al. 2012, Lisboa et al., 2012, 2014b).   Our results show that 
the correlation level between X and Y data tables for the treatment A affects the ANOVA and 
multiple comparisons of means using the PAM. We have found that the PAMs generated 
from the higher levels of correlation (0,7 and 0,9) are more capable of discriminating the 
treatment (A) from the others (B, C, and D). These results are supporting the statement in 
favor of using the PAM to assess the strength of the multivariate correlation across categorical 
levels.  

One point that may raise confusion is the interpretation of the PAM-multiple 
comparisons of means results.  We have used Tukey’s HSD as it is a standard option in many 
studies, but we have found out that when only plotting the point estimate (mean), and the 
standard deviation of the residuals for each treatment, the pattern of lower residual size in 
highest correlation levels was clearer (Fig. 7). The assumptions are that since the link between 
two data tables is done through of residuals of the PAM after the best fit, then the lower 
residual, the higher is the multivariate correlation for a specific treatment. Our results support 
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this by showing that the mean residual size at treatment A was lower than the mean residual 
size in others treatments B, C, and D when the correlation between X and Y for treatment A 
was high (0,7 and 0,9). Thus, the overall interpretation for PAM using multiple comparisons 
is that low mean residual size for a treatment indicates “strong” multivariate correlation.  

5.6.4. Final considerations 

Here, we explored for the first time the effects of the increasing number of correlated 
columns across different imposed correlation levels within the  X data table on the Procrustes 
results related to the fit (R statistic and its P value), and elated to the use of the Procrustean 
residual vector (PAM) in ANOVA. In addition, we also tried to show that the PAM when 
used in multiple comparisons can provide insights about differences among “treatments” in 
terms of multivariate relationship. We have only used data tables whose entries were 
quantitative, so only dissimilarities and transformations considered adequate for this kind of 
data were used in pre- transformation for getting the same dimension between X and Y. 
However, we do recognize that binary data tables (presence/absence) are also important in 
ecology (Anderson et al., 2011) and the evaluation of the correlation levels within binary data 
tables on Procrustes results must be an objective of future investigations.  

Procrustes analysis is a symmetric approach used to link two or more data tables 
(Legendre and Legendre, 2012). This means that the data tables under analysis are evaluated 
on an equal footing, that is, without setting which of them is response or predictor. Also  
Procrustes does not have a regression step, which implies that the number of columns 
(variables, p) in a matrix does not need to be lower than the number of rows (sites, n) as 
required by traditional approaches  to link data tables such as RDA (Redundancy analysis) 
and CCA (Canonical Correspondence Analysis). In the present study we did not do a formal 
evaluation to test the effects of n>p on the Procrustes results as we focused on correlation 
effects. However, by varying the dimensions of X and Y data tables in the second part of the 
paper (n = 40, p = 25, 45, and 80) the results indicated that n<p and n >p may have similar 
effects on Procrustes results.  

To our knowledge this is the first study exploring the correlation effects on the 
Procrustes results and interpretation. Here we showed that both the number of correlated 
variables and the correlation levels within an entire data table have no effects on in the 
mainstream Procrustes results related to the fit, such as R and its significance. In addition, the 
increasing correlating level within a data table does not affect the results of ANOVA using 
PAM as response. Overall, our study supports that the Procrustes fit only take into account the 
variation between data tables.  However, we advocated that ecologists must be careful about 
the form in which the data tables to be investigated are used in the Procrustes analysis even 
our results have pointed no clear difference between data type entries (raw data, distance 
matrices, and ordination axes) in terms of Procrustes results. In addition, we found that using 
only PAMs from significant Procrustean relationships in downstream statistical analysis 
might not make sense since the results of PAM-ANOVA and multiple were not clearly 
correlated to the significance of the R statistics. It suggests that even PAMs from Procrustes 
analysis that came out as non-significant can be used in downstream analysis, such ANOVA 
and multiple comparisons of means, in order to evaluate the variation of the multivariate 
relationship across different categorical factors. Finally, we were able to show that the PAM 
do can reflect treatment differences in terms of multivariate correlation when it is used in 
mean multiple comparisons of means. It supports PAM – ANOVA – Multiple comparisons as 
an interesting composite approach for getting additional information on how the strength of 
the multivariate correlation varies across categorical environmental levels.  
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6. CONCLUSÕES FINAIS 

Ao longo dos três capítulos da tese foram discutidos em detalhes o uso e a 
interpretação de resultados obtidos pelo uso da análise Procrustes. É preciso frisar, porém, que 
Procrustes é uma ferramenta para levantar indícios e não deve ser utilizada de forma exclusiva 
para fins de extrapolação dos resultados. Ou seja, Procrustes não é uma panacea. O mais 
prontamente visível inconveniente dessa abordagem é o fato de a correlação procrusteana ser 
expressa apenas em termos de magnitude e não em termos de natureza, isto é, Procrustes não 
informa se o relacionamento é negativo. Além disso, apesar do uso do vetor de resíduos, 
PAM, em outras abordagens estatísticas ter se mostrado como relativamente simples, o fato de 
essa abordagem ser aplicada em dois estádios pode inibir potenciais usuários, principalmente 
aqueles não versados em programas estatísticos que ofertam maior flexibilidade, como é o 
caso do programa R. Entretanto, esclarecidos tais inconvenientes, o conjunto da obra suportou 
a hipótese geral da tese de que a análise Procrustes pode ser utilizada como ferramenta útil 
para cientistas de solo e planta interessados em particionar a força de correlação multivariada 
em diferentes contextos de pesquisa. Ainda, potenciais usuários ganharam mais um suporte 
para diminuir suas ressalvas em relação à Procrustes uma vez que foi mostrado que os 
resultados da Procrustes são insensíveis ao aumento da correlação dentro das tabelas de dados 
sob análise. Somado a isso, a ideia de que o vetor de resíduos pode ser utilizado para verificar 
consistências dentro e entre coordenadas correspondentes foi sustentada pela corrente tese, 
mostrando que, de fato, a PAM é capaz de traduzir diferenças entre tratamentos em termos de 
correlação multivariada, aumentando a faixa de hipóteses potenciais que os cientistas de 
planta e solo podem testar em suas investigações. 

Especificamente no estudo de caso do Capítulo II, que envolve dados do projeto 
CARBIOMA, a abordagem Procrusteana, ou Procrustes análises, associada à análise de 
variância e o teste de médias foi capaz de revelar que os sistemas de integração lavoura-
pecuária-floresta divergem em relação aos outros tipos de uso da terra não apenas em temos 
de variáveis microbiológicas individuais, mas também em como os efeitos das propriedades 
do solo sobre a comunidade microbiana são modulados por ambos, tipo de uso da terra, e pela 
artificial heterogeneidade vegetal caracterizada pelo uso de espécies vegetais exóticas de 
forma sistematiza em meio às pastagens manejadas. Isso suportou a hipótese do caso de 
estudo sustentando que a relação fungo:bactéria, associada a ambientes de menor 
mineralização da matéria orgânica e, portanto, mais sustentável sob o ponto de vista de 
sequestro de carbono no solo, fosse mais destacada nos sistemas de integração do que nos 
outros tipos de uso da terra, em especial a pastagem degradada.  

Contudo, é reconhecido que o presente estudo não foi de longo prazo, fator essencial 
para tornar mais realística a afirmativa de que os sistemas iLPF fomentam o domínio de 
fungos nos canais de transferência de energia entre solo e atmosfera. Dessa forma, com 
respeito ao estudo de caso do sistema de integração, muitas dúvidas permanecem uma vez que 
o foco foi apenas sobre uma das partes do binômio formado por estrutura e funcionamento do 
solo. Mesmo assim, o caso de estudo no Capítulo II foi o primeiro artigo a ter explicitamente 
como foco a variação em estrutura microbiana entre e dentro de sistemas de integração 
lavoura-pecuária floresta. Feitas as ressalvas, os resultados levantados pelo presente estudo de 
caso harmonizam com os postulados advogando a substituição das pastagens por sistemas de 
integração em busca de um novo paradigma de sustentabilidade para a agropecuária brasileira. 
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